Download make your own neural network an in depth visual introduction for beginners PDF/ePub eBooks with no limit and without survey . Instant access to millions of titles from Our Library and it’s FREE to try!

Note:! If the content not Found, you must refresh this page manually or just wait 15 second to this page refresh automatically. As alternative try our Book Search Engine, click here

Make Your Own Neural Network An In Depth Visual Introduction For Beginners


Author : Michael Taylor
language : en
Publisher:
Release Date : 2017-10-04

DOWNLOAD
READ ONLINE

Download Make Your Own Neural Network An In Depth Visual Introduction For Beginners written by Michael Taylor and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-04 with categories.


A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow. What you will gain from this book: * A deep understanding of how a Neural Network works. * How to build a Neural Network from scratch using Python. Who this book is for: * Beginners who want to fully understand how networks work, and learn to build two step-by-step examples in Python. * Programmers who need an easy to read, but solid refresher, on the math of neural networks. What's Inside - 'Make Your Own Neural Network: An Indepth Visual Introduction For Beginners' What Is a Neural Network? Neural networks have made a gigantic comeback in the last few decades and you likely make use of them everyday without realizing it, but what exactly is a neural network? What is it used for and how does it fit within the broader arena of machine learning? we gently explore these topics so that we can be prepared to dive deep further on. To start, we'll begin with a high-level overview of machine learning and then drill down into the specifics of a neural network. The Math of Neural Networks On a high level, a network learns just like we do, through trial and error. This is true regardless if the network is supervised, unsupervised, or semi-supervised. Once we dig a bit deeper though, we discover that a handful of mathematical functions play a major role in the trial and error process. It also becomes clear that a grasp of the underlying mathematics helps clarify how a network learns. * Forward Propagation * Calculating The Total Error * Calculating The Gradients * Updating The Weights Make Your Own Artificial Neural Network: Hands on Example You will learn to build a simple neural network using all the concepts and functions we learned in the previous few chapters. Our example will be basic but hopefully very intuitive. Many examples available online are either hopelessly abstract or make use of the same data sets, which can be repetitive. Our goal is to be crystal clear and engaging, but with a touch of fun and uniqueness. This section contains the following eight chapters. Building Neural Networks in Python There are many ways to build a neural network and lots of tools to get the job done. This is fantastic, but it can also be overwhelming when you start, because there are so many tools to choose from. We are going to take a look at what tools are needed and help you nail down the essentials. To build a neural network Tensorflow and Neural Networks There is no single way to build a feedforward neural network with Python, and that is especially true if you throw Tensorflow into the mix. However, there is a general framework that exists that can be divided into five steps and grouped into two parts. We are going to briefly explore these five steps so that we are prepared to use them to build a network later on. Ready? Let's begin. Neural Network: Distinguish Handwriting We are going to dig deep with Tensorflow and build a neural network that can distinguish between handwritten numbers. We'll use the same 5 steps we covered in the high-level overview, and we are going to take time exploring each line of code. Neural Network: Classify Images 10 minutes. That's all it takes to build an image classifier thanks to Google! We will provide a high-level overview of how to classify images using a convolutional neural network (CNN) and Google's Inception V3 model. Once finished, you will be able to tweak this code to classify any type of image sets! Cats, bats, super heroes - the sky's the limit.

Make Your Own Neural Network


Author : Tariq Rashid
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2016-03-31

DOWNLOAD
READ ONLINE

Download Make Your Own Neural Network written by Tariq Rashid and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-31 with categories.


A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

Neural Networks And Deep Learning


Author : Pat Nakamoto
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2018-01-12

DOWNLOAD
READ ONLINE

Download Neural Networks And Deep Learning written by Pat Nakamoto and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-12 with categories.


Ready to crank up a neural network to get your self-driving car pick up the kids from school? Want to add 'Deep Learning' to your LinkedIn profile? Well, hold on there... Before you embark on your epic journey into the world of deep learning, there is basic theory to march through first! Take a step-by-step journey through the basics of Neural Networks and Deep Learning, made so simple that...even your granny could understand it! What you will gain from this book: * A deep understanding of how a Neural Network and Deep Learning work * A basics comprehension on how to build a Deep Neural Network from scratch Who this book is for: * Beginners who want to approach the topic, but are too afraid of complex math to start! What's Inside? * A brief introduction to Machine Learning * Two main Types of Machine Learning Algorithms * A practical example of Unsupervised Learning * What are Neural Networks? * McCulloch-Pitts's Neuron * Types of activation function * Types of network architectures * Learning processes * Advantages and disadvantages * Let us give a memory to our Neural Network * The example of book writing Software * Deep learning: the ability of learning to learn * How does Deep Learning work? * Main architectures and algorithms * Main types of DNN * Available Frameworks and libraries * Convolutional Neural Networks * Tunnel Vision * Convolution * The right Architecture for a Neural Network * Test your Neural Network * A general overview of Deep Learning * What are the limits of Deep Learning? * Deep Learning: the basics * Layers, Learning paradigms, Training, Validation * Main architectures and algorithms * Models for Deep Learning * Probabilistic graphic models * Restricted Boltzmann Machines * Deep Belief Networks * Available Frameworks and libraries * TensorFlow Hit download. Now!

An Introduction To Neural Networks


Author : Kevin Gurney
language : en
Publisher: CRC Press
Release Date : 2003-12-16

DOWNLOAD
READ ONLINE

Download An Introduction To Neural Networks written by Kevin Gurney and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-12-16 with Computers categories.


Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Neural Networks For Complete Beginners


Author : Mark Smart
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-02-23

DOWNLOAD
READ ONLINE

Download Neural Networks For Complete Beginners written by Mark Smart and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-23 with categories.


This book is an exploration of an artificial neural network. It has been created to suit even the complete beginners to artificial neural networks. The first part of the book is an overview of artificial neural networks so as to help the reader understand what they are. You will also learn the relationship between the neurons which make up the human brain and the artificial neurons. Artificial neural networks embrace the concept of learning which is common in human beings. This book guides you to understand how learning takes place in artificial neural networks. The back-propagation algorithm, which is used for training artificial neural networks, is discussed. The book also guides you through the architecture of an artificial neural network. The various types of artificial neural networks based on their architecture are also discussed. The book guides you on the necessary steps for one to build a neural network. The perception, which is a type of an artificial neural network, is explored, and you will explore how to implement one programmatically. The following topics are discussed in this book: -What is a Neural Network? -Learning in Neural Networks -The Architecture of Neural Networks -Building Neural Networks -The Perceptron

Neural Network Programming With Python


Author : Max Sharp
language : en
Publisher:
Release Date : 2016-10-18

DOWNLOAD
READ ONLINE

Download Neural Network Programming With Python written by Max Sharp and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-18 with categories.


This book is a guide on how to implement a neural network in the Python programming language. It begins by giving you a brief overview of neural networks so as to know what they are, where they are used, and how they are implemented. The next step is an exploration of the backpropagation algorithm. This is the algorithm behind the functionality of neural networks, and it involves a forward and backward pass. Numby is a Python library which can be used for the purpose of implementation of a neural network. This library is discussed in this book, and you are guided on how to use it for that purpose. The functionality of neural networks has to be improved. The various ways to improve how a neural network works is also explored. You are then guided on how to implement neural networks with Neupy, another Python library. The following topics are discussed in this book: - A Brief Overview of Neural Networks - Backpropagation Algorithm - Neural Networks with Numpy - Improving a Neural Network in Python - Neupy - Models in Neural Networks

Neural Networks For Applied Sciences And Engineering


Author : Sandhya Samarasinghe
language : en
Publisher: CRC Press
Release Date : 2016-04-19

DOWNLOAD
READ ONLINE

Download Neural Networks For Applied Sciences And Engineering written by Sandhya Samarasinghe and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Computers categories.


In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts. It contains an overview of neural network architectures for practical data analysis followed by extensive step-by-step coverage on linear networks, as well as, multi-layer perceptron for nonlinear prediction and classification explaining all stages of processing and model development illustrated through practical examples and case studies. Later chapters present an extensive coverage on Self Organizing Maps for nonlinear data clustering, recurrent networks for linear nonlinear time series forecasting, and other network types suitable for scientific data analysis. With an easy to understand format using extensive graphical illustrations and multidisciplinary scientific context, this book fills the gap in the market for neural networks for multi-dimensional scientific data, and relates neural networks to statistics. Features § Explains neural networks in a multi-disciplinary context § Uses extensive graphical illustrations to explain complex mathematical concepts for quick and easy understanding ? Examines in-depth neural networks for linear and nonlinear prediction, classification, clustering and forecasting § Illustrates all stages of model development and interpretation of results, including data preprocessing, data dimensionality reduction, input selection, model development and validation, model uncertainty assessment, sensitivity analyses on inputs, errors and model parameters Sandhya Samarasinghe obtained her MSc in Mechanical Engineering from Lumumba University in Russia and an MS and PhD in Engineering from Virginia Tech, USA. Her neural networks research focuses on theoretical understanding and advancements as well as practical implementations.