Download matlab deep learning apress download PDF/ePub eBooks with no limit and without survey . Instant access to millions of titles from Our Library and it’s FREE to try!

Note:! If the content not Found, you must refresh this page manually or just wait 15 second to this page refresh automatically. As alternative try our Book Search Engine, click here

Matlab Deep Learning


Author : Phil Kim
language : en
Publisher: Apress
Release Date : 2017-06-15

DOWNLOAD
READ ONLINE

Download Matlab Deep Learning written by Phil Kim and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-15 with Computers categories.


Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Matlab Machine Learning


Author : Michael Paluszek
language : en
Publisher: Apress
Release Date : 2016-12-28

DOWNLOAD
READ ONLINE

Download Matlab Machine Learning written by Michael Paluszek and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-28 with Computers categories.


This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning. The book reviews commercially available packages for machine learning and shows how they fit into the field. The book then shows how MATLAB can be used to solve machine learning problems and how MATLAB graphics can enhance the programmer’s understanding of the results and help users of their software grasp the results. Machine Learning can be very mathematical. The mathematics for each area is introduced in a clear and concise form so that even casual readers can understand the math. Readers from all areas of engineering will see connections to what they know and will learn new technology. The book then provides complete solutions in MATLAB for several important problems in machine learning including face identification, autonomous driving, and data classification. Full source code is provided for all of the examples and applications in the book. What you'll learn: An overview of the field of machine learning Commercial and open source packages in MATLAB How to use MATLAB for programming and building machine learning applications MATLAB graphics for machine learning Practical real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers and engineering students wanting a comprehensive and practical introduction to machine learning.

Matlab Recipes


Author : Michael Paluszek
language : en
Publisher: Apress
Release Date : 2015-11-23

DOWNLOAD
READ ONLINE

Download Matlab Recipes written by Michael Paluszek and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-23 with Computers categories.


Learn from state-of-the-art examples in robotics, motors, detection filters, chemical processes, aircraft, and spacecraft. This is a practical reference for industry engineers using MATLAB to solve everyday problems. With MATLAB Recipes: A Problem-Solution Approach you will review contemporary MATLAB coding including the latest language features and use MATLAB as a software development environment including code organization, GUI development, and algorithm design and testing. This book provides practical guidance for using MATLAB to build a body of code you can turn to time and again for solving technical problems in your line of work. Develop algorithms, test them, visualize the results, and pass the code along to others to create a functional code base for your firm.

Introduction To Matlab For Engineers And Scientists


Author : Sandeep Nagar
language : en
Publisher: Apress
Release Date : 2017-11-27

DOWNLOAD
READ ONLINE

Download Introduction To Matlab For Engineers And Scientists written by Sandeep Nagar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-27 with Computers categories.


Familiarize yourself with MATLAB using this concise, practical tutorial that is focused on writing code to learn concepts. Starting from the basics, this book covers array-based computing, plotting and working with files, numerical computation formalism, and the primary concepts of approximations. Introduction to MATLAB is useful for industry engineers, researchers, and students who are looking for open-source solutions for numerical computation. In this book you will learn by doing, avoiding technical jargon, which makes the concepts easy to learn. First you’ll see how to run basic calculations, absorbing technical complexities incrementally as you progress toward advanced topics. Throughout, the language is kept simple to ensure that readers at all levels can grasp the concepts. What You'll Learn Apply sample code to your engineering or science problems Work with MATLAB arrays, functions, and loops Use MATLAB’s plotting functions for data visualization Solve numerical computing and computational engineering problems with a MATLAB case study Who This Book Is For Engineers, scientists, researchers, and students who are new to MATLAB. Some prior programming experience would be helpful but not required.

Beginning Julia Programming


Author : Sandeep Nagar
language : en
Publisher: Apress
Release Date : 2017-11-25

DOWNLOAD
READ ONLINE

Download Beginning Julia Programming written by Sandeep Nagar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-25 with Computers categories.


Get started with Julia for engineering and numerical computing, especially data science, machine learning, and scientific computing applications. This book explains how Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS, or Stata combined with the speed, capacity, and performance of C, C++, or Java. You’ll learn the OOP principles required to get you started, then how to do basic mathematics with Julia. Other core functionality of Julia that you’ll cover, includes working with complex numbers, rational and irrational numbers, rings, and fields. Beginning Julia Programming takes you beyond these basics to harness Julia’s powerful features for mathematical functions in Julia, arrays for matrix operations, plotting, and more. Along the way, you also learn how to manage strings, write functions, work with control flows, and carry out I/O to implement and leverage the mathematics needed for your data science and analysis projects. "Julia walks like Python and runs like C". This phrase explains why Julia is quickly growing as the most favored option for data analytics and numerical computation. After reading and using this book, you'll have the essential knowledge and skills to build your first Julia-based application. What You'll Learn Obtain core skills in Julia Apply Julia in engineering and science applications Work with mathematical functions in Julia Use arrays, strings, functions, control flow, and I/O in Julia Carry out plotting and display basic graphics Who This Book Is For Those who are new to Julia; experienced users may also find this helpful as a reference.

Mastering Machine Learning With Python In Six Steps


Author : Manohar Swamynathan
language : en
Publisher: Apress
Release Date : 2017-06-05

DOWNLOAD
READ ONLINE

Download Mastering Machine Learning With Python In Six Steps written by Manohar Swamynathan and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-05 with Computers categories.


Master machine learning with Python in six steps and explore fundamental to advanced topics, all designed to make you a worthy practitioner. This book’s approach is based on the “Six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away. Mastering Machine Learning with Python in Six Steps presents each topic in two parts: theoretical concepts and practical implementation using suitable Python packages. You’ll learn the fundamentals of Python programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as feature dimension reduction, regression, time series forecasting and their efficient implementation in Scikit-learn are also covered. Finally, you’ll explore advanced text mining techniques, neural networks and deep learning techniques, and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. What You'll Learn Examine the fundamentals of Python programming language Review machine Learning history and evolution Understand machine learning system development frameworks Implement supervised/unsupervised/reinforcement learning techniques with examples Explore fundamental to advanced text mining techniques Implement various deep learning frameworks Who This Book Is For Python developers or data engineers looking to expand their knowledge or career into machine learning area. Non-Python (R, SAS, SPSS, Matlab or any other language) machine learning practitioners looking to expand their implementation skills in Python. Novice machine learning practitioners looking to learn advanced topics, such as hyperparameter tuning, various ensemble techniques, natural language processing (NLP), deep learning, and basics of reinforcement learning.

Matlab Programming For Numerical Analysis


Author : Cesar Lopez
language : en
Publisher: Apress
Release Date : 2014-09-22

DOWNLOAD
READ ONLINE

Download Matlab Programming For Numerical Analysis written by Cesar Lopez and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-22 with Computers categories.


MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become familiar with the MATLAB environment, and then you will begin to harness the power of MATLAB. You will learn the MATLAB language, starting with an introduction to variables, and how to manipulate numbers, vectors, matrices, arrays and character strings. You will learn about MATLAB’s high-precision capabilities, and how you can use MATLAB to solve problems, making use of arithmetic, relational and logical operators in combination with the common functions and operations of real and complex analysis and linear algebra. You will learn to implement various numerical methods for optimization, interpolation and solving non-linear equations. You will discover how MATLAB can solve problems in differential and integral calculus, both numerically and symbolically, including techniques for solving ordinary and partial differential equations, and how to graph the solutions in brilliant high resolution. You will then expand your knowledge of the MATLAB language by learning how to use commands which enable you to investigate the convergence of sequences and series, and explore continuity and other analytical features of functions in one and several variables.