Download neural network programming with python PDF/ePub eBooks with no limit and without survey . Instant access to millions of titles from Our Library and it’s FREE to try!

Note:! If the content not Found, you must refresh this page manually or just wait 15 second to this page refresh automatically. As alternative try our Book Search Engine, click here

Neural Network Programming With Python


Author : Fabio M. Soares
language : en
Publisher:
Release Date : 2017-04-28

DOWNLOAD
READ ONLINE

Download Neural Network Programming With Python written by Fabio M. Soares and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-28 with categories.


Build smarter programs with the power of neural networks and the simplicity of PythonAbout This Book* Make your roots stronger in neural networks by this concept-rich yet highly practical guide; from single layer to multiple layers with the help of Python* Through this book, you will develop a strong background in neural networks, regardless of your level of previous knowledge in this subject* You will be able to implement solutions from scratch, so the whole process on foundations of neural network solution design will be paced by youWho This Book Is ForThis book is designed for novices as well as intermediate Python developers who have a statistical background and want to work with neural networks to get better results from complex data. It also contains enough food for thought for those who want to improve their skills in machine learning and deep learning.What You Will Learn* See the latest innovations in the field* Become fluent in Python to develop neural networks solutions capable of solving complex and interesting tasks* Implement neural networks step-by-step* Solve your complex computational problems with the aid of neural networks and Python* The reader will be able to set up his/her neural network with ease, according to the objective he/she wants to apply.* The reader will be able to design time series based models using RNNs in Python.* Will be able to design high level solutions with CNNs in PythonIn DetailIf you wish to solve your complex computational problem efficiently, neural networks come to the rescue. This book will teach you how to ace neural networks and solve your computational problems with Python-right from predicting to self-learning models-with ease. We start off with neural network design, then you'll build a solid foundational knowledge of how a neural network learns from data, and the principles behind it.This book cover various types of neural networks including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but also see a generalization of these networks. With the help of practical examples and real-world use cases, you will learn to implement these neural networks in your applications.

Neural Network Programming With Python


Author : Max Sharp
language : en
Publisher:
Release Date : 2016-10-18

DOWNLOAD
READ ONLINE

Download Neural Network Programming With Python written by Max Sharp and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-18 with categories.


This book is a guide on how to implement a neural network in the Python programming language. It begins by giving you a brief overview of neural networks so as to know what they are, where they are used, and how they are implemented. The next step is an exploration of the backpropagation algorithm. This is the algorithm behind the functionality of neural networks, and it involves a forward and backward pass. Numby is a Python library which can be used for the purpose of implementation of a neural network. This library is discussed in this book, and you are guided on how to use it for that purpose. The functionality of neural networks has to be improved. The various ways to improve how a neural network works is also explored. You are then guided on how to implement neural networks with Neupy, another Python library. The following topics are discussed in this book: - A Brief Overview of Neural Networks - Backpropagation Algorithm - Neural Networks with Numpy - Improving a Neural Network in Python - Neupy - Models in Neural Networks

Neural Network Programming With Tensorflow


Author : Manpreet Singh Ghotra
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-10

DOWNLOAD
READ ONLINE

Download Neural Network Programming With Tensorflow written by Manpreet Singh Ghotra and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-10 with Computers categories.


Neural Networks and their implementation decoded with TensorFlow About This Book Develop a strong background in neural network programming from scratch, using the popular Tensorflow library. Use Tensorflow to implement different kinds of neural networks – from simple feedforward neural networks to multilayered perceptrons, CNNs, RNNs and more. A highly practical guide including real-world datasets and use-cases to simplify your understanding of neural networks and their implementation. Who This Book Is For This book is meant for developers with a statistical background who want to work with neural networks. Though we will be using TensorFlow as the underlying library for neural networks, book can be used as a generic resource to bridge the gap between the math and the implementation of deep learning. If you have some understanding of Tensorflow and Python and want to learn what happens at a level lower than the plain API syntax, this book is for you. What You Will Learn Learn Linear Algebra and mathematics behind neural network. Dive deep into Neural networks from the basic to advanced concepts like CNN, RNN Deep Belief Networks, Deep Feedforward Networks. Explore Optimization techniques for solving problems like Local minima, Global minima, Saddle points Learn through real world examples like Sentiment Analysis. Train different types of generative models and explore autoencoders. Explore TensorFlow as an example of deep learning implementation. In Detail If you're aware of the buzz surrounding the terms such as "machine learning," "artificial intelligence," or "deep learning," you might know what neural networks are. Ever wondered how they help in solving complex computational problem efficiently, or how to train efficient neural networks? This book will teach you just that. You will start by getting a quick overview of the popular TensorFlow library and how it is used to train different neural networks. You will get a thorough understanding of the fundamentals and basic math for neural networks and why TensorFlow is a popular choice Then, you will proceed to implement a simple feed forward neural network. Next you will master optimization techniques and algorithms for neural networks using TensorFlow. Further, you will learn to implement some more complex types of neural networks such as convolutional neural networks, recurrent neural networks, and Deep Belief Networks. In the course of the book, you will be working on real-world datasets to get a hands-on understanding of neural network programming. You will also get to train generative models and will learn the applications of autoencoders. By the end of this book, you will have a fair understanding of how you can leverage the power of TensorFlow to train neural networks of varying complexities, without any hassle. While you are learning about various neural network implementations you will learn the underlying mathematics and linear algebra and how they map to the appropriate TensorFlow constructs. Style and Approach This book is designed to give you just the right number of concepts to back up the examples. With real-world use cases and problems solved, this book is a handy guide for you. Each concept is backed by a generic and real-world problem, followed by a variation, making you independent and able to solve any problem with neural networks. All of the content is demystified by a simple and straightforward approach.

Make Your Own Neural Network


Author : Tariq Rashid
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2016-03-31

DOWNLOAD
READ ONLINE

Download Make Your Own Neural Network written by Tariq Rashid and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-31 with categories.


A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

Python Artificial Intelligence Projects For Beginners


Author : Joshua Eckroth
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-31

DOWNLOAD
READ ONLINE

Download Python Artificial Intelligence Projects For Beginners written by Joshua Eckroth and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-31 with Computers categories.


Build smart applications by implementing real-world artificial intelligence projects Key Features Explore a variety of AI projects with Python Get well-versed with different types of neural networks and popular deep learning algorithms Leverage popular Python deep learning libraries for your AI projects Book Description Artificial Intelligence (AI) is the newest technology that’s being employed among varied businesses, industries, and sectors. Python Artificial Intelligence Projects for Beginners demonstrates AI projects in Python, covering modern techniques that make up the world of Artificial Intelligence. This book begins with helping you to build your first prediction model using the popular Python library, scikit-learn. You will understand how to build a classifier using an effective machine learning technique, random forest, and decision trees. With exciting projects on predicting bird species, analyzing student performance data, song genre identification, and spam detection, you will learn the fundamentals and various algorithms and techniques that foster the development of these smart applications. In the concluding chapters, you will also understand deep learning and neural network mechanisms through these projects with the help of the Keras library. By the end of this book, you will be confident in building your own AI projects with Python and be ready to take on more advanced projects as you progress What you will learn Build a prediction model using decision trees and random forest Use neural networks, decision trees, and random forests for classification Detect YouTube comment spam with a bag-of-words and random forests Identify handwritten mathematical symbols with convolutional neural networks Revise the bird species identifier to use images Learn to detect positive and negative sentiment in user reviews Who this book is for Python Artificial Intelligence Projects for Beginners is for Python developers who want to take their first step into the world of Artificial Intelligence using easy-to-follow projects. Basic working knowledge of Python programming is expected so that you’re able to play around with code

Deep Learning For Natural Language Processing


Author : Palash Goyal
language : en
Publisher: Apress
Release Date : 2018-06-26

DOWNLOAD
READ ONLINE

Download Deep Learning For Natural Language Processing written by Palash Goyal and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-26 with Computers categories.


Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You’ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. What You Will Learn Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification Who This Book Is For Software developers who are curious to try out deep learning with NLP.

Neural Network Programming With Java


Author : Fabio M. Soares
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-03-14

DOWNLOAD
READ ONLINE

Download Neural Network Programming With Java written by Fabio M. Soares and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-14 with Computers categories.


Create and unleash the power of neural networks by implementing professional Java code About This Book Learn to build amazing projects using neural networks including forecasting the weather and pattern recognition Explore the Java multi-platform feature to run your personal neural networks everywhere This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This book is for Java developers who want to know how to develop smarter applications using the power of neural networks. Those who deal with a lot of complex data and want to use it efficiently in their day-to-day apps will find this book quite useful. Some basic experience with statistical computations is expected. What You Will Learn Develop an understanding of neural networks and how they can be fitted Explore the learning process of neural networks Build neural network applications with Java using hands-on examples Discover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the data Apply the code generated in practical examples, including weather forecasting and pattern recognition Understand how to make the best choice of learning parameters to ensure you have a more effective application Select and split data sets into training, test, and validation, and explore validation strategies In Detail Want to discover the current state-of-art in the field of neural networks that will let you understand and design new strategies to apply to more complex problems? This book takes you on a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java, giving you everything you need to stand out. You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using practical examples. Further on, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time. All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience. Style and approach This book takes you on a steady learning curve, teaching you the important concepts while being rich in examples. You'll be able to relate to the examples in the book while implementing neural networks in your day-to-day applications.