Hands On Artificial Intelligence With Java For Beginners

Download Hands On Artificial Intelligence With Java For Beginners PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Artificial Intelligence With Java For Beginners book now. This site is like a library, Use search box in the widget to get ebook that you want.

If the content Hands On Artificial Intelligence With Java For Beginners not Found or Blank , you must refresh this page manually.

Hands On Artificial Intelligence With Java For Beginners


Hands On Artificial Intelligence With Java For Beginners
DOWNLOAD
READ ONLINE

Download Hands On Artificial Intelligence With Java For Beginners PDF/ePub, Mobi eBooks by Click Download or Read Online button. Instant access to millions of titles from Our Library and it’s FREE to try! All books are in clear copy here, and all files are secure so don't worry about it.



Hands On Artificial Intelligence With Java For Beginners


Hands On Artificial Intelligence With Java For Beginners
DOWNLOAD
READ ONLINE


Author : Nisheeth Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31

Hands On Artificial Intelligence With Java For Beginners written by Nisheeth Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.


Build, train, and deploy intelligent applications using Java libraries Key Features Leverage the power of Java libraries to build smart applications Build and train deep learning models for implementing artificial intelligence Learn various algorithms to automate complex tasks Book Description Artificial intelligence (AI) is increasingly in demand as well as relevant in the modern world, where everything is driven by technology and data. AI can be used for automating systems or processes to carry out complex tasks and functions in order to achieve optimal performance and productivity. Hands-On Artificial Intelligence with Java for Beginners begins by introducing you to AI concepts and algorithms. You will learn about various Java-based libraries and frameworks that can be used in implementing AI to build smart applications. In addition to this, the book teaches you how to implement easy to complex AI tasks, such as genetic programming, heuristic searches, reinforcement learning, neural networks, and segmentation, all with a practical approach. By the end of this book, you will not only have a solid grasp of AI concepts, but you'll also be able to build your own smart applications for multiple domains. What you will learn Leverage different Java packages and tools such as Weka, RapidMiner, and Deeplearning4j, among others Build machine learning models using supervised and unsupervised machine learning techniques Implement different deep learning algorithms in Deeplearning4j and build applications based on them Study the basics of heuristic searching and genetic programming Differentiate between syntactic and semantic similarity among texts Perform sentiment analysis for effective decision making with LingPipe Who this book is for Hands-On Artificial Intelligence with Java for Beginners is for Java developers who want to learn the fundamentals of artificial intelligence and extend their programming knowledge to build smarter applications.

Paging Dr Within


Paging Dr Within
DOWNLOAD
READ ONLINE


Author : Tom Garz
language : en
Publisher: Tom Garz - TG Ideas LLC
Release Date : 2020-03-22

Paging Dr Within written by Tom Garz and has been published by Tom Garz - TG Ideas LLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-22 with Medical categories.


As a Patient - Would you like a "Patient Listener"? Are you tired of Medicine/Treatment "Trial and Error", at your expense? Are you tired of being shuffled from one Doctor to another? Do you want to "get better" and "stay better"? As a Doctor – Would you like more good information from Patients, relevant to their symptoms? Would you like to help Patients "get better" and "stay better"? Are you open to venturing out of your "comfort zone" in diagnosing and treating patients? Do you sometimes wonder if there is more to diagnosing/treating than what you were taught in Medical School? As a Health/Medical Innovator, Inventor, Engineer, Writer, other Creative Person – Are you looking for some new ideas? Would you like to "Interface" with the "Dr. Within" each of us? As an Insurance Company - Would you like to "pay out" less? If you answered yes to any of the above, maybe this book is for you. This book describes the Concepts of a "Patient Listener" and a "Super Symptom Checker" – Human, Computer, and/or Computer-Assisted Human – Considering the "Big Picture" around Health and/or Symptoms. This book is about 250 pages, a little over half written text. The remainder contains many Reference Links, from which you can build upon and learn from. The author of this book has set up Discussion Groups for this book to help others share, network, collaborate, etc. *** Use of the Information in this book may help the Patient, Doctor, and/or Others "Get Better". Some common Side Effects may include: A better understanding of what affects Health and Symptoms, Seeing the big picture surrounding Symptoms, Better health, less dependence on medication/treatment, generally "feeling better", Experiencing less perceived stress, more contentment with self and life, Perceiving more control of your life, in general, realizing there are always options no matter what, New insights on what could be done to make "it" better. Note - Continued Use of the Information in this book may result in "Staying Better". Ask your Doctor if "Getting Better" and "Staying Better" are right for you. :-)

Hands On Artificial Intelligence For Android


Hands On Artificial Intelligence For Android
DOWNLOAD
READ ONLINE


Author : Vasco Correia Veloso
language : en
Publisher: BPB Publications
Release Date : 2022-01-27

Hands On Artificial Intelligence For Android written by Vasco Correia Veloso and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-27 with Computers categories.


Build machine learning models and train them to make Android applications much smarter. KEY FEATURES ● Learn by doing, training, and evaluating your own machine learning models. ● Includes pre-trained TensorFlow models for image processing. ● Explains practical use cases of artificial intelligence in Android. DESCRIPTION This book features techniques and real implementations of machine learning applications on Android phones. This book covers various developer tools, including TensorFlow and Google ML Kit. The book begins with a quick review of android application development fundamentals and a couple of Java and Kotlin implementations developed using the Android Studio integrated development environment. The book explores TensorFlow Lite and Google ML Kit, along with some of the most widely used machine learning techniques. The book covers real projects on TensorFlow, demonstrates how to collect photos with Camera X, and preprocess them with the Google ML Kit. It explains how to onboard the power of machine learning in Android applications that detect images, identify faces, and apply effects to photographs, among other things. These applications are constructed on top of TensorFlow models – some of which were created and trained by the reader – and then converted to TensorFlow Lite for mobile applications. After reading the book, the reader will be able to apply machine learning techniques to create Android applications and take their applications to the next level. This book can be a successful tool to deep dive into Data Science for all mobile programmers. WHAT YOU WILL LEARN ● Get well-versed with Android Development and the fundamentals of AI. ● Learn to set up the ML environment with hands-on knowledge of TensorFlow. ● Build, train, and evaluate Machine Learning models. ● Practice ML by working on real face verification and identification applications. ● Explore cutting-edge models such as GAN and RNN in detail. ● Experience the use of CameraX, SQLite, and Google ML Kit on Android. WHO THIS BOOK IS FOR This book is intended for android developers, application engineers, machine learning engineers, and anybody interested in infusing intelligent, inventive, and smart features into mobile phones. Readers should have a basic understanding of the Java programming language. TABLE OF CONTENTS 1. Building an Application with Android Studio and Java 2. Event Handling and Intents in Android 3. Building our Base Application with Kotlin and SQLite 4. An Overview of Artificial Intelligence and Machine Learning 5. Introduction to TensorFlow 6. Training a Model for Image Recognition with TensorFlow 7. Android Camera Image Capture with CameraX 8. Using the Image Recognition Model in an Android Application 9. Detecting Faces with the Google ML Kit 10. Verifying Faces in Android with TensorFlow Lite 11. Registering Faces in the Application 12. Image Processing with Generative Adversarial Networks 13. Describing Images with NLP

Exploring Machine Learning A Beginners Perspective


Exploring Machine Learning A Beginners Perspective
DOWNLOAD
READ ONLINE


Author : Dr. Raghuram Bhukya
language : en
Publisher: Horizon Books ( A Division of Ignited Minds Edutech P Ltd)
Release Date : 2021-04-20

Exploring Machine Learning A Beginners Perspective written by Dr. Raghuram Bhukya and has been published by Horizon Books ( A Division of Ignited Minds Edutech P Ltd) this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-20 with Computers categories.


Machine learning is a field of Artificial intelligence that provides algorithms those can learn and improve from experiences. Machine learning algorithms are turned as integral parts of today’s digital life. Its applications include recommender systems, targeted campaigns, text categorization, computer vision and auto security systems etc. Machine learning also considered as essential part of data science due to its capability of providing predictive analytics, capability in handling variety of data and suitability for big data applications. Its capability for predictive analytics resulted of its general structure that is building statistical models out of training data. In other hand easy scalability advantage of machine learning algorithms is making them to be suitable for big data applications. The different types of learning algorithms includes supervised learning, unsupervised learning, reinforcement learning, feature learning, rule based learning, Robot or expert system learning, sparse dictionary and anomaly detection. These learning algorithms can be realized by computing models artificial neural networks, decision trees, support vector machines, regression analysis, Bayesian networks, Genetic algorithms and soft computing. The familiar tools to implement machine learning algorithms include Python, R, Matlab, Scala, Clojure and Ruby. Involving of such open source programming languages, tools and social network communities makes the machine learning most progressing filed of computer science. The machine learning life cycle includes defining project objectives, explore the types and format, modeling data to fit for machine learning algorithms, deciding suitable machine learning model and implement and decide best result from data for decision making. These days, machine learning is observing great interest by the society and it has turned as one of the significant responsibility of top level managers to transform their business in the profitable means by exploring its basic functionalities. The world is at the sheer of realizing a situation where machines will work in agreement with human being to work together, operation, and advertise their services in a novel way which is targeted, valuable, and well-versed. In order to achieve this, they can influence machine learning distinctiveness. Dr. Raghuram Bhukya

Machine Learning In Java Second Edition


Machine Learning In Java Second Edition
DOWNLOAD
READ ONLINE


Author : AshishSingh Bhatia
language : en
Publisher:
Release Date : 2018-11-28

Machine Learning In Java Second Edition written by AshishSingh Bhatia and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-28 with Computers categories.


Leverage the power of Java and its associated machine learning libraries to build powerful predictive models Key Features Solve predictive modeling problems using the most popular machine learning Java libraries Explore data processing, machine learning, and NLP concepts using JavaML, WEKA, MALLET libraries Practical examples, tips, and tricks to help you understand applied machine learning in Java Book Description As the amount of data in the world continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of big data and Data Science. The main challenge is how to transform data into actionable knowledge. Machine Learning in Java will provide you with the techniques and tools you need. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. The code in this book works for JDK 8 and above, the code is tested on JDK 11. Moving on, you will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text analysis. By the end of the book, you will have explored related web resources and technologies that will help you take your learning to the next level. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. What you will learn Discover key Java machine learning libraries Implement concepts such as classification, regression, and clustering Develop a customer retention strategy by predicting likely churn candidates Build a scalable recommendation engine with Apache Mahout Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts and algorithms Write your own activity recognition model for eHealth applications Who this book is for If you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications with ease. You should be familiar with Java programming and some basic data mining concepts to make the most of this book, but no prior experience with machine learning is required.

Beginning Java 8 Games Development


Beginning Java 8 Games Development
DOWNLOAD
READ ONLINE


Author : Wallace Jackson
language : en
Publisher: Apress
Release Date : 2014-12-04

Beginning Java 8 Games Development written by Wallace Jackson and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-04 with Computers categories.


Beginning Java 8 Games Development, written by Java expert and author Wallace Jackson, teaches you the fundamentals of building a highly illustrative game using the Java 8 programming language. In this book, you'll employ open source software as tools to help you quickly and efficiently build your Java game applications. You'll learn how to utilize vector and bit-wise graphics; create sprites and sprite animations; handle events; process inputs; create and insert multimedia and audio files; and more. Furthermore, you'll learn about JavaFX 8, now integrated into Java 8 and which gives you additional APIs that will make your game application more fun and dynamic as well as give it a smaller foot-print; so, your game application can run on your PC, mobile and embedded devices. After reading and using this tutorial, you'll come away with a cool Java-based 2D game application template that you can re-use and apply to your own game making ambitions or for fun.

Machine Learning End To End Guide For Java Developers


Machine Learning End To End Guide For Java Developers
DOWNLOAD
READ ONLINE


Author : Richard M. Reese
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-10-05

Machine Learning End To End Guide For Java Developers written by Richard M. Reese and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-05 with Computers categories.


Develop, Implement and Tuneup your Machine Learning applications using the power of Java programming About This Book Detailed coverage on key machine learning topics with an emphasis on both theoretical and practical aspects Address predictive modeling problems using the most popular machine learning Java libraries A comprehensive course covering a wide spectrum of topics such as machine learning and natural language through practical use-cases Who This Book Is For This course is the right resource for anyone with some knowledge of Java programming who wants to get started with Data Science and Machine learning as quickly as possible. If you want to gain meaningful insights from big data and develop intelligent applications using Java, this course is also a must-have. What You Will Learn Understand key data analysis techniques centered around machine learning Implement Java APIs and various techniques such as classification, clustering, anomaly detection, and more Master key Java machine learning libraries, their functionality, and various kinds of problems that can be addressed using each of them Apply machine learning to real-world data for fraud detection, recommendation engines, text classification, and human activity recognition Experiment with semi-supervised learning and stream-based data mining, building high-performing and real-time predictive models Develop intelligent systems centered around various domains such as security, Internet of Things, social networking, and more In Detail Machine Learning is one of the core area of Artificial Intelligence where computers are trained to self-learn, grow, change, and develop on their own without being explicitly programmed. In this course, we cover how Java is employed to build powerful machine learning models to address the problems being faced in the world of Data Science. The course demonstrates complex data extraction and statistical analysis techniques supported by Java, applying various machine learning methods, exploring machine learning sub-domains, and exploring real-world use cases such as recommendation systems, fraud detection, natural language processing, and more, using Java programming. The course begins with an introduction to data science and basic data science tasks such as data collection, data cleaning, data analysis, and data visualization. The next section has a detailed overview of statistical techniques, covering machine learning, neural networks, and deep learning. The next couple of sections cover applying machine learning methods using Java to a variety of chores including classifying, predicting, forecasting, market basket analysis, clustering stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, and deep learning. The last section highlights real-world test cases such as performing activity recognition, developing image recognition, text classification, and anomaly detection. The course includes premium content from three of our most popular books: Java for Data Science Machine Learning in Java Mastering Java Machine Learning On completion of this course, you will understand various machine learning techniques, different machine learning java algorithms you can use to gain data insights, building data models to analyze larger complex data sets, and incubating applications using Java and machine learning algorithms in the field of artificial intelligence. Style and approach This comprehensive course proceeds from being a tutorial to a practical guide, providing an introduction to machine learning and different machine learning techniques, exploring machine learning with Java libraries, and demonstrating real-world machine learning use cases using the Java platform.