Quantum Groups And Their Primitive Ideals

DOWNLOAD
Download Quantum Groups And Their Primitive Ideals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Groups And Their Primitive Ideals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Quantum Groups And Their Primitive Ideals
DOWNLOAD
Author : Anthony Joseph
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Quantum Groups And Their Primitive Ideals written by Anthony Joseph and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the cat egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic to Uq(g). Apparently this failed; but V. G. Drinfeld found that it could be essentially made to work for the "Borel part" of Uq(g) denoted U (b) and further found a general construction (the Drinfeld double) q mirroring a Lie bialgebra. This gives Uq(g) up to passage to a quotient. One of the most remarkable aspects of the above superficially different ap proaches is their extraordinary intercoherence. In particular they essentially all lead for G semisimple to the same and hence "canonical", objects Rq[G] and Uq(g), though this epithet may as yet be premature.
Quantum Groups And Lie Theory
DOWNLOAD
Author : Andrew Pressley
language : en
Publisher: Cambridge University Press
Release Date : 2002-01-17
Quantum Groups And Lie Theory written by Andrew Pressley and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-17 with Mathematics categories.
Since its genesis in the early 1980s, the subject of quantum groups has grown rapidly. By the late 1990s most of the foundational issues had been resolved and many of the outstanding problems clearly formulated. To take stock and to discuss the most fruitful directions for future research many of the world's leading figures in this area met at the Durham Symposium on Quantum Groups in the summer of 1999, and this volume provides an excellent overview of the material presented there. It includes important surveys of both cyclotomic Hecke algebras and the dynamical Yang-Baxter equation. Plus contributions which treat the construction and classification of quantum groups or the associated solutions of the quantum Yang-Baxter equation. The representation theory of quantum groups is discussed, as is the function algebra approach to quantum groups, and there is a new look at the origins of quantum groups in the theory of integrable systems.
Quantum Groups
DOWNLOAD
Author : Benjamin Enriquez
language : en
Publisher: European Mathematical Society
Release Date : 2008
Quantum Groups written by Benjamin Enriquez and has been published by European Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.
The volume starts with a lecture course by P. Etingof on tensor categories (notes by D. Calaque). This course is an introduction to tensor categories, leading to topics of recent research such as realizability of fusion rings, Ocneanu rigidity, module categories, weak Hopf algebras, Morita theory for tensor categories, lifting theory, categorical dimensions, Frobenius-Perron dimensions, and the classification of tensor categories. The remainder of the book consists of three detailed expositions on associators and the Vassiliev invariants of knots, classical and quantum integrable systems and elliptic algebras, and the groups of algebra automorphisms of quantum groups. The preface puts the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of the ongoing research in the domain of quantum groups, an important subject of current mathematical physics.
Lectures On Algebraic Quantum Groups
DOWNLOAD
Author : Ken Brown
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Lectures On Algebraic Quantum Groups written by Ken Brown and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
In September 2000, at the Centre de Recerca Matematica in Barcelona, we pre sented a 30-hour Advanced Course on Algebraic Quantum Groups. After the course, we expanded and smoothed out the material presented in the lectures and inte grated it with the background material that we had prepared for the participants; this volume is the result. As our title implies, our aim in the course and in this text is to treat selected algebraic aspects of the subject of quantum groups. Sev eral of the words in the previous sentence call for some elaboration. First, we mean to convey several points by the term 'algebraic' - that we are concerned with algebraic objects, the quantized analogues of 'classical' algebraic objects (in contrast, for example, to quantized versions of continuous function algebras on compact groups); that we are interested in algebraic aspects of the structure of these objects and their representations (in contrast, for example, to applications to other areas of mathematics); and that our tools will be drawn primarily from noncommutative algebra, representation theory, and algebraic geometry. Second, the term 'quantum groups' itself. This label is attached to a large and rapidly diversifying field of mathematics and mathematical physics, originally launched by developments around 1980 in theoretical physics and statistical me chanics. It is a field driven much more by examples than by axioms, and so resists attempts at concise description (but see Chapter 1. 1 and the references therein).
On The Spectra Of Quantum Groups
DOWNLOAD
Author : Milen Yakimov
language : en
Publisher: American Mathematical Soc.
Release Date : 2014-04-07
On The Spectra Of Quantum Groups written by Milen Yakimov and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-07 with Mathematics categories.
Joseph and Hodges-Levasseur (in the A case) described the spectra of all quantum function algebras on simple algebraic groups in terms of the centers of certain localizations of quotients of by torus invariant prime ideals, or equivalently in terms of orbits of finite groups. These centers were only known up to finite extensions. The author determines the centers explicitly under the general conditions that the deformation parameter is not a root of unity and without any restriction on the characteristic of the ground field. From it he deduces a more explicit description of all prime ideals of than the previously known ones and an explicit parametrization of .
Lectures On Quantum Groups
DOWNLOAD
Author : Jens Carsten Jantzen
language : en
Publisher: American Mathematical Soc.
Release Date : 1996
Lectures On Quantum Groups written by Jens Carsten Jantzen and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Mathematics categories.
The material is very well motivated ... Of the various monographs available on quantum groups, this one ... seems the most suitable for most mathematicians new to the subject ... will also be appreciated by a lot of those with considerably more experience. --Bulletin of the London Mathematical Society Since its origin, the theory of quantum groups has become one of the most fascinating topics of modern mathematics, with numerous applications to several sometimes rather disparate areas, including low-dimensional topology and mathematical physics. This book is one of the first expositions that is specifically directed to students who have no previous knowledge of the subject. The only prerequisite, in addition to standard linear algebra, is some acquaintance with the classical theory of complex semisimple Lie algebras. Starting with the quantum analog of $\mathfrak{sl}_2$, the author carefully leads the reader through all the details necessary for full understanding of the subject, particularly emphasizing similarities and differences with the classical theory. The final chapters of the book describe the Kashiwara-Lusztig theory of so-called crystal (or canonical) bases in representations of complex semisimple Lie algebras. The choice of the topics and the style of exposition make Jantzen's book an excellent textbook for a one-semester course on quantum groups.
Algebras Of Functions On Quantum Groups Part I
DOWNLOAD
Author : Leonid I. Korogodski
language : en
Publisher: American Mathematical Soc.
Release Date : 1998
Algebras Of Functions On Quantum Groups Part I written by Leonid I. Korogodski and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.
The text is devoted to the study of algebras of functions on quantum groups. The book includes the theory of Poisson-Lie algebras (quasi-classical version of algebras of functions on quantum groups), a description of representations of algebras of functions and the theory of quantum Weyl groups. It can serve as a text for an introduction to the theory of quantum groups and is intended for graduate students and research mathematicians working in algebra, representation theory and mathematical physics.
Quantum Groups
DOWNLOAD
Author : Vladimir K. Dobrev
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2017-07-10
Quantum Groups written by Vladimir K. Dobrev and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-10 with Science categories.
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
Finite Dimensional Algebras And Quantum Groups
DOWNLOAD
Author : Bangming Deng
language : en
Publisher: American Mathematical Soc.
Release Date : 2008
Finite Dimensional Algebras And Quantum Groups written by Bangming Deng and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.
"The interplay between finite dimensional algebras and Lie theory dates back many years. In more recent times, these interrelations have become even more strikingly apparent. This text combines, for the first time in book form, the theories of finite dimensional algebras and quantum groups. More precisely, it investigates the Ringel-Hall algebra realization for the positive part of a quantum enveloping algebra associated with a symmetrizable Cartan matrix and it looks closely at the Beilinson-Lusztig-MacPherson realization for the entire quantum $\mathfrak{gl}_n$. The book begins with the two realizations of generalized Cartan matrices, namely, the graph realization and the root datum realization. From there, it develops the representation theory of quivers with automorphisms and the theory of quantum enveloping algebras associated with Kac-Moody Lie algebras. These two independent theories eventually meet in Part 4, under the umbrella of Ringel-Hall algebras. Cartan matrices can also be used to define an important class of groups--Coxeter groups--and their associated Hecke algebras. Hecke algebras associated with symmetric groups give rise to an interesting class of quasi-hereditary algebras, the quantum Schur algebras. The structure of these finite dimensional algebras is used in Part 5 to build the entire quantum $\mathfrak{gl}_n$ through a completion process of a limit algebra (the Beilinson-Lusztig-MacPherson algebra). The book is suitable for advanced graduate students. Each chapter concludes with a series of exercises, ranging from the routine to sketches of proofs of recent results from the current literature."--Publisher's website.
Hopf Algebras
DOWNLOAD
Author : Jeffrey Bergen
language : en
Publisher: CRC Press
Release Date : 2004-01-28
Hopf Algebras written by Jeffrey Bergen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-01-28 with Mathematics categories.
This volume publishes key proceedings from the recent International Conference on Hopf Algebras held at DePaul University, Chicago, Illinois. With contributions from leading researchers in the field, this collection deals with current topics ranging from categories of infinitesimal Hopf modules and bimodules to the construction of a Hopf algebraic Morita invariant. It uses the newly introduced theory of bi-Frobenius algebras to investigate a notion of group-like algebras and summarizes results on the classification of Hopf algebras of dimension pq. It also explores pre-Lie, dendriform, and Nichols algebras and discusses support cones for infinitesimal group schemes.