Advances In P Adic And Non Archimedean Analysis

DOWNLOAD
Download Advances In P Adic And Non Archimedean Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In P Adic And Non Archimedean Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advances In Non Archimedean Analysis
DOWNLOAD
Author : Helge Glöckner
language : en
Publisher: American Mathematical Soc.
Release Date : 2016-05-20
Advances In Non Archimedean Analysis written by Helge Glöckner and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-20 with Mathematics categories.
This volume contains the Proceedings of the 13th International Conference on p-adic Functional Analysis, held from August 12–16, 2014, at the University of Paderborn, Paderborn, Germany. The articles included in this book feature recent developments in various areas of non-Archimedean analysis, non-Archimedean functional analysis, representation theory, number theory, non-Archimedean dynamical systems and applications. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
Advances In Non Archimedean Analysis And Applications
DOWNLOAD
Author : W. A. Zúñiga-Galindo
language : en
Publisher:
Release Date : 2021
Advances In Non Archimedean Analysis And Applications written by W. A. Zúñiga-Galindo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role - a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems - for instance, proteins - asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.
Advances In Non Archimedean Analysis And Applications
DOWNLOAD
Author : W. A. Zúñiga-Galindo
language : en
Publisher: Springer Nature
Release Date : 2021-12-02
Advances In Non Archimedean Analysis And Applications written by W. A. Zúñiga-Galindo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-02 with Mathematics categories.
This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role – a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems – for instance, proteins – asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.
Advances In Non Archimedean Analysis
DOWNLOAD
Author : Jesus Araujo-Gomez
language : en
Publisher: American Mathematical Soc.
Release Date : 2011
Advances In Non Archimedean Analysis written by Jesus Araujo-Gomez and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Mathematics categories.
These collected articles feature recent developments in various areas of non-Archimedean analysis: Hilbert and Banach spaces, finite dimensional spaces, topological vector spaces and operator theory, strict topologies, spaces of continuous functions and of strictly differentiable functions, isomorphisms between Banach functions spaces, and measure and integration.
Advances In Ultrametric Analysis
DOWNLOAD
Author : Alain Escassut
language : en
Publisher: American Mathematical Soc.
Release Date : 2018-03-26
Advances In Ultrametric Analysis written by Alain Escassut and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-26 with Mathematics categories.
Articles included in this book feature recent developments in various areas of non-Archimedean analysis: summation of -adic series, rational maps on the projective line over , non-Archimedean Hahn-Banach theorems, ultrametric Calkin algebras, -modules with a convex base, non-compact Trace class operators and Schatten-class operators in -adic Hilbert spaces, algebras of strictly differentiable functions, inverse function theorem and mean value theorem in Levi-Civita fields, ultrametric spectra of commutative non-unital Banach rings, classes of non-Archimedean Köthe spaces, -adic Nevanlinna theory and applications, and sub-coordinate representation of -adic functions. Moreover, a paper on the history of -adic analysis with a comparative summary of non-Archimedean fields is presented. Through a combination of new research articles and a survey paper, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
Advances In Ultrametric Analysis
DOWNLOAD
Author : Khodr Shamseddine
language : en
Publisher: American Mathematical Soc.
Release Date : 2013
Advances In Ultrametric Analysis written by Khodr Shamseddine and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.
This volume contains papers based on lectures given at the 12th International Conference on p-adic Functional Analysis, which was held at the University of Manitoba on July 2-6, 2012. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
P Adic Analysis And Mathematical Physics
DOWNLOAD
Author : Vasili? Sergeevich Vladimirov
language : en
Publisher: World Scientific
Release Date : 1994
P Adic Analysis And Mathematical Physics written by Vasili? Sergeevich Vladimirov and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Science categories.
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.
P Adic Analysis Compared With Real
DOWNLOAD
Author : Svetlana Katok
language : en
Publisher: American Mathematical Soc.
Release Date : 2007
P Adic Analysis Compared With Real written by Svetlana Katok and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
The book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. in addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.
Dynamics In One Non Archimedean Variable
DOWNLOAD
Author : Robert L. Benedetto
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-03-05
Dynamics In One Non Archimedean Variable written by Robert L. Benedetto and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-05 with Mathematics categories.
The theory of complex dynamics in one variable, initiated by Fatou and Julia in the early twentieth century, concerns the iteration of a rational function acting on the Riemann sphere. Building on foundational investigations of p-adic dynamics in the late twentieth century, dynamics in one non-archimedean variable is the analogous theory over non-archimedean fields rather than over the complex numbers. It is also an essential component of the number-theoretic study of arithmetic dynamics. This textbook presents the fundamentals of non-archimedean dynamics, including a unified exposition of Rivera-Letelier's classification theorem, as well as results on wandering domains, repelling periodic points, and equilibrium measures. The Berkovich projective line, which is the appropriate setting for the associated Fatou and Julia sets, is developed from the ground up, as are relevant results in non-archimedean analysis. The presentation is accessible to graduate students with only first-year courses in algebra and analysis under their belts, although some previous exposure to non-archimedean fields, such as the p-adic numbers, is recommended. The book should also be a useful reference for more advanced students and researchers in arithmetic and non-archimedean dynamics.
P Adic Analysis
DOWNLOAD
Author : W. A. Zúñiga-Galindo
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2024-12-02
P Adic Analysis written by W. A. Zúñiga-Galindo and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-02 with Mathematics categories.
This book is intended to provide a fast, interdisciplinary introduction to the basic results of p-adic analysis and its connections with mathematical physics and applications. The book revolves around three topics: (1) p-adic heat equations and ultradiffusion; (2) fundamental solutions and local zeta functions, Riesz kernels, and quadratic forms; (3) Sobolev-type spaces and pseudo-differential evolution equations. These topics are deeply connected with very relevant current research areas. The book includes numerous examples, exercises, and snapshots of several mathematical theories. This book arose from the need to quickly introduce mathematical audience the basic concepts and techniques to do research in p-adic analysis and its connections with mathematical physics and other areas. The book is addressed to a general mathematical audience, which includes computer scientists, theoretical physicists, and people interested in mathematical analysis, PDEs, etc.