Algorithms For Approximation

DOWNLOAD
Download Algorithms For Approximation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algorithms For Approximation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Approximation Algorithms
DOWNLOAD
Author : Vijay V. Vazirani
language : en
Publisher: Springer Science & Business Media
Release Date : 2002-12-05
Approximation Algorithms written by Vijay V. Vazirani and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-12-05 with Computers categories.
Covering the basic techniques used in the latest research work, the author consolidates progress made so far, including some very recent and promising results, and conveys the beauty and excitement of work in the field. He gives clear, lucid explanations of key results and ideas, with intuitive proofs, and provides critical examples and numerous illustrations to help elucidate the algorithms. Many of the results presented have been simplified and new insights provided. Of interest to theoretical computer scientists, operations researchers, and discrete mathematicians.
The Design Of Approximation Algorithms
DOWNLOAD
Author : David P. Williamson
language : en
Publisher: Cambridge University Press
Release Date : 2011-04-26
The Design Of Approximation Algorithms written by David P. Williamson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-26 with Computers categories.
Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.
Approximation Algorithms For Np Hard Problems
DOWNLOAD
Author : Dorit S. Hochbaum
language : en
Publisher: Course Technology
Release Date : 1997
Approximation Algorithms For Np Hard Problems written by Dorit S. Hochbaum and has been published by Course Technology this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Computers categories.
This is the first book to fully address the study of approximation algorithms as a tool for coping with intractable problems. With chapters contributed by leading researchers in the field, this book introduces unifying techniques in the analysis of approximation algorithms. APPROXIMATION ALGORITHMS FOR NP-HARD PROBLEMS is intended for computer scientists and operations researchers interested in specific algorithm implementations, as well as design tools for algorithms. Among the techniques discussed: the use of linear programming, primal-dual techniques in worst-case analysis, semidefinite programming, computational geometry techniques, randomized algorithms, average-case analysis, probabilistically checkable proofs and inapproximability, and the Markov Chain Monte Carlo method. The text includes a variety of pedagogical features: definitions, exercises, open problems, glossary of problems, index, and notes on how best to use the book.
Geometric Approximation Algorithms
DOWNLOAD
Author : Sariel Har-Peled
language : en
Publisher: American Mathematical Soc.
Release Date : 2011
Geometric Approximation Algorithms written by Sariel Har-Peled and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
Design And Analysis Of Approximation Algorithms
DOWNLOAD
Author : Ding-Zhu Du
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-11-18
Design And Analysis Of Approximation Algorithms written by Ding-Zhu Du and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-18 with Mathematics categories.
This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.
Stochastic Approximation And Recursive Algorithms And Applications
DOWNLOAD
Author : Harold Kushner
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-04
Stochastic Approximation And Recursive Algorithms And Applications written by Harold Kushner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-04 with Mathematics categories.
The basic stochastic approximation algorithms introduced by Robbins and MonroandbyKieferandWolfowitzintheearly1950shavebeenthesubject of an enormous literature, both theoretical and applied. This is due to the large number of applications and the interesting theoretical issues in the analysis of “dynamically de?ned” stochastic processes. The basic paradigm is a stochastic di?erence equation such as ? = ? + Y , where ? takes n+1 n n n n its values in some Euclidean space, Y is a random variable, and the “step n size” > 0 is small and might go to zero as n??. In its simplest form, n ? is a parameter of a system, and the random vector Y is a function of n “noise-corrupted” observations taken on the system when the parameter is set to ? . One recursively adjusts the parameter so that some goal is met n asymptotically. Thisbookisconcernedwiththequalitativeandasymptotic properties of such recursive algorithms in the diverse forms in which they arise in applications. There are analogous continuous time algorithms, but the conditions and proofs are generally very close to those for the discrete time case. The original work was motivated by the problem of ?nding a root of a continuous function g ̄(?), where the function is not known but the - perimenter is able to take “noisy” measurements at any desired value of ?. Recursive methods for root ?nding are common in classical numerical analysis, and it is reasonable to expect that appropriate stochastic analogs would also perform well.
Approximation And Optimization
DOWNLOAD
Author : Ioannis C. Demetriou
language : en
Publisher: Springer
Release Date : 2020-08-14
Approximation And Optimization written by Ioannis C. Demetriou and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-14 with Mathematics categories.
This book focuses on the development of approximation-related algorithms and their relevant applications. Individual contributions are written by leading experts and reflect emerging directions and connections in data approximation and optimization. Chapters discuss state of the art topics with highly relevant applications throughout science, engineering, technology and social sciences. Academics, researchers, data science practitioners, business analysts, social sciences investigators and graduate students will find the number of illustrations, applications, and examples provided useful. This volume is based on the conference Approximation and Optimization: Algorithms, Complexity, and Applications, which was held in the National and Kapodistrian University of Athens, Greece, June 29–30, 2017. The mix of survey and research content includes topics in approximations to discrete noisy data; binary sequences; design of networks and energy systems; fuzzy control; large scale optimization; noisy data; data-dependent approximation; networked control systems; machine learning ; optimal design; no free lunch theorem; non-linearly constrained optimization; spectroscopy.
Approximation Theory And Algorithms For Data Analysis
DOWNLOAD
Author : Armin Iske
language : en
Publisher: Springer
Release Date : 2018-12-14
Approximation Theory And Algorithms For Data Analysis written by Armin Iske and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-14 with Mathematics categories.
This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.
Approximation Algorithms And Semidefinite Programming
DOWNLOAD
Author : Bernd Gärtner
language : en
Publisher: Springer
Release Date : 2014-02-22
Approximation Algorithms And Semidefinite Programming written by Bernd Gärtner and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-22 with Mathematics categories.
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Handbook Of Approximation Algorithms And Metaheuristics
DOWNLOAD
Author : Teofilo F. Gonzalez
language : en
Publisher: CRC Press
Release Date : 2018-05-15
Handbook Of Approximation Algorithms And Metaheuristics written by Teofilo F. Gonzalez and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-15 with Computers categories.
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.