[PDF] Analyzing The Impact Of Plug In Electric Vehicle S Charging Load On The Grid Based On Driver S Personal Attitudes Towards Pev Usage And Charging - eBooks Review

Analyzing The Impact Of Plug In Electric Vehicle S Charging Load On The Grid Based On Driver S Personal Attitudes Towards Pev Usage And Charging


Analyzing The Impact Of Plug In Electric Vehicle S Charging Load On The Grid Based On Driver S Personal Attitudes Towards Pev Usage And Charging
DOWNLOAD

Download Analyzing The Impact Of Plug In Electric Vehicle S Charging Load On The Grid Based On Driver S Personal Attitudes Towards Pev Usage And Charging PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analyzing The Impact Of Plug In Electric Vehicle S Charging Load On The Grid Based On Driver S Personal Attitudes Towards Pev Usage And Charging book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Analyzing The Impact Of Plug In Electric Vehicle S Charging Load On The Grid Based On Driver S Personal Attitudes Towards Pev Usage And Charging


Analyzing The Impact Of Plug In Electric Vehicle S Charging Load On The Grid Based On Driver S Personal Attitudes Towards Pev Usage And Charging
DOWNLOAD
Author : Mehran Mustafa
language : en
Publisher:
Release Date : 2021

Analyzing The Impact Of Plug In Electric Vehicle S Charging Load On The Grid Based On Driver S Personal Attitudes Towards Pev Usage And Charging written by Mehran Mustafa and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Attitude (Psychology) categories.


Today, the transport sector is responsible for nearly one-quarter of global energy-related direct carbon-dioxide (CO2) emissions and is a significant contributor to air pollution. In the United States, the transportation sector has the highest share (28%) in the mix of green-house gas (GHG) sources. Some of the more developed nations across the globe are now committed to improve the climate and air quality. Countries like China, Europe and the United States are front runners in introducing ambitions policies to incentivize the production and adoption of plug-in electric vehicles (PEV's). Along with the expected benefits of PEV uptake, large scale deployment poses a challenge for the electric grid, especially at the distribution level, since the charging load of an PEV is substantial. This load is dependent not only on the characteristics of the PEV, but also on its use and charging habits of its user(s). Since a PEV can be directly plugged into the grid at any available point, which may be spatially anywhere in the utility's service area, it is important to model its accurate use and charging behavior of the users. Having precise knowledge of the load profile, the utilities can have a better economic solution to balancing the supply and demand. In this dissertation, an agent-based model is developed that estimates the impact of charging load of PEVs on the grid. It is based on reasonably realistic diverse human behavior pertaining to day-to-day driving patterns and charging practices and their effect on each other. The model portrays the heterogenous, spatial and temporal nature of this load, which depends on the habits and the interaction among different agents. The model mimics the heterogeneity of choices made by human drivers and its effect on the charging choices of other drivers, which is an important element to consider when depicting human behavior. The model uses travel statistics of conventional personally owned vehicles (POVs) from the National Household Travel Survey (NHTS) conducted by the Federal Highway Administration (FHWA) across different states of the United States from 2016-2017. The travel needs are modified to incorporate the effect of EV's limited range and charging time requirements. A modified GIS map of Collinsville, IL, is used to implement the spatial requirements of travel, with, which highlight exact load points. The agent's travel and charging choices are modelled with heterogenous rules of engagement with the environment and other agents. Common psychological effects of limited range, long charging times, and range anticipation are applied heterogeneously to all agents to create a macro environment. The resulting charging load is superimposed on existing substation transformer load and voltage profile is analyzed to study the impact of different charging strategies and charging infrastructure availability. Different case studies are analyzed to investigate the effect of the aggregated load of multiple charging points in the respective service areas of the distribution transformers.



Plug In Electric Vehicles In Smart Grids


Plug In Electric Vehicles In Smart Grids
DOWNLOAD
Author : Sumedha Rajakaruna
language : en
Publisher: Springer
Release Date : 2014-11-29

Plug In Electric Vehicles In Smart Grids written by Sumedha Rajakaruna and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-29 with Technology & Engineering categories.


This book covers the recent research advancements in the area of charging strategies that can be employed to accommodate the anticipated high deployment of Plug-in Electric Vehicles (PEVs) in smart grids. Recent literature has focused on various potential issues of uncoordinated charging of PEVs and methods of overcoming such challenges. After an introduction to charging coordination paradigms of PEVs, this book will present various ways the coordinated control can be accomplished. These innovative approaches include hierarchical coordinated control, model predictive control, optimal control strategies to minimize load variance, smart PEV load management based on load forecasting, integrating renewable energy sources such as photovoltaic arrays to supplement grid power, using wireless communication networks to coordinate the charging load of a smart grid and using market price of electricity and customers payment to coordinate the charging load. Hence, this book proposes many new strategies proposed recently by the researchers around the world to address the issues related to coordination of charging load of PEVs in a future smart grid.



Study Of Electric Vehicle Charging Strategies And Energy Management In Power Distribution Systems


Study Of Electric Vehicle Charging Strategies And Energy Management In Power Distribution Systems
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2019

Study Of Electric Vehicle Charging Strategies And Energy Management In Power Distribution Systems written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.


Abstract : The goal of this research is to study the control approaches of the electric vehicle - grid integration systems in a power distribution grid to benefit the electric vehicle charging customers and the grid operation. To find the balance of both aspects, a series of modeling and simulation have been conducted to validate the effectiveness of the developed control approaches. The impact of the plug-in electric vehicle (PEV) charging activity on the distribution power grid is analyzed. The PEV charging behavior model is established through the statistical analysis of the National Highway Travel Survey. This charging behavior model is used to generate the PEV charging load profiles for the investigation of the PEV charging impacts on the local distribution transformer aging and the network voltage deviation. The simulation results indicate that the high penetration rate of PEV charging potentially leads to serious distribution transformer aging and voltage problems to the end users in the remote side of a distribution line. To mitigate the PEV charging impacts, scheduling methods are investigated based on the existing utility programs, such as the Time of Use and Direct Load Control, and optimization techniques. The charging scheduling shifts the PEV charging load to the grid off-peak period to flatten the load profile. Therefore, it mitigates the PEV charging resulted overloading, transformer aging, and voltage deviation problems. To improve the customer acceptance of PEV charging control, the PEV charging in a distribution grid form a competition game, which allows individual PEV charging xiii customers to pursue charging cost minimization while various grid and customer constraints are met. Due to that the individual objectives and constraints are related to the PEVs charging strategy selection, the charging game is considered as a generalized Nash Equilibrium problem (GNEP). The Nikaido-Isoda reformulation function is used to solve the GNEP. The obtained PEV charging strategies lead to the lowest PEV charging cost and guarantee the grid operation safety and customer requirement. The obtained solution strategies of this problem are regarded as the Nash Equilibriums of the game. To explore the possibility of providing grid services by using the PEV smart charging method, a study of distribution grid level vehicle - grid integration control with voltage regulation is conducted. In this study, the PEV charging control is designed at both Microgrid-level and distribution-level. The Microgrid controllers aim to optimally allocate the limited power to the charging PEVs. When a distribution grid voltage violation occurs, a distributed multi-Microgrids negotiation is triggered to find the best power curtailment values for individual Microgrids, which satisfy the voltage recovery requirement and have a minimal impact on the grid operation. The last part of the dissertation presents the effort of developing a real-time VGI simulation platform at distribution grid level in a real-time power system simulator, OPAL-RT. The efforts include the algorithm implementation to eliminate time overrun and the cloud communication for information exchange between a real-world VGI Microgrid and the real-time simulation model in OPAL-RT.



Impact Of Pev Charging Loads On Distribution System Operations And Optimal Siting And Sizing Of Pev Charging Stations


Impact Of Pev Charging Loads On Distribution System Operations And Optimal Siting And Sizing Of Pev Charging Stations
DOWNLOAD
Author : Shubhalakshmi Shetty
language : en
Publisher:
Release Date : 2015

Impact Of Pev Charging Loads On Distribution System Operations And Optimal Siting And Sizing Of Pev Charging Stations written by Shubhalakshmi Shetty and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.


Smart grid has emerged as a promising paradigm to promote and deliver a clean, modern and efficient electricity grid to all customers, and it allows Local Distribution Companies (LDC) to integrate renewable sources more reliably, efficiently, safely and economically. Smart grid realizes Plug-in Electric Vehicles (PEVs) as a potential solution to reduce green house gas (GHG) emissions. However, large scale penetration of PEVs can significantly impact distribution system operations. This thesis first presents an extensive study of PEV characteristics such as, owner driving behavior, mobility trends of the system as a whole, battery capacity, State of Charge (SOC), different charging levels and energy required for charging the battery. The US National Household Travel Survey (NHTS) 2009 data set is explored to model the PEV load characteristics by representing customers' charging behavior in close to reality. This includes the study of the number of trips covered each day, during weekdays and weekends, over different seasons, the miles traveled, and the home arrival and departure times. Using the developed PEV load profiles, distribution system impact analysis and optimal operational studies are carried out to examine how the LDC can accommodate such loads. The NHTS data set is also used to develop probability density functions (pdfs) of certain mobility patterns such as initial SOC and starting time of charging. Using these pdfs, a Stochastic Distribution Optimal Power Flow (SDOPF) model with various objectives such as minimization of feeder loss, minimization of energy drawn and minimization of PEV charging cost, subject to feeder operational constraints is presented. Various scenarios of uncontrolled and smart charging are studied. In the uncontrolled charging case, the worst case scenarios are discussed. The smart charging scenarios provides with the optimal charging schedules which result in flattening the load profile. This thesis further presents an approach to optimally siting and sizing of Electric Vehicle Charging Stations (EVCS). Various aspects in identifying the optimal location of EVCS, from both the LDC's and customers' perspectives are discussed. A new approach to modeling the initial SOC of PEVs considering the travel distance from home to EVCS in relation to the feeder sections' electrical parameters is presented. A heuristic approach to determine the optimal siting and sizing of EVCS considering minimum feeder loss, peak demand and customer charging cost is proposed.



Analysis Of Electric Vehicle Charging Impact On The Electric Power Grid


Analysis Of Electric Vehicle Charging Impact On The Electric Power Grid
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2016

Analysis Of Electric Vehicle Charging Impact On The Electric Power Grid written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


In order to evaluate the impact of electric vehicles (EVs) on the distribution grid and assess their potential benefits to the future smart grid, it is crucial to study the EV charging patterns and the usage charging station. Though EVs are not yet widely adopted nationwide, a valuable methodology to conduct such studies is the statistical analysis of real-world charging data. This paper presents actual EV charging behavior of 64 EVs (5 brands, 8 models) from EV users and charging stations at Los Angeles Department of Water and Power for more than one year. Twenty-four-hour EV charging load curves have been generated and studied for various load periods: daily, monthly, seasonally and yearly. Finally, the effect and impact of EV load on the California distribution network are evaluated at different EV penetration rates.



New Plug In Electric Vehicles Charging Models Based On Demand Response Programs For System Reliability Improvement


New Plug In Electric Vehicles Charging Models Based On Demand Response Programs For System Reliability Improvement
DOWNLOAD
Author : Abdulaziz Almutairi
language : en
Publisher:
Release Date : 2018

New Plug In Electric Vehicles Charging Models Based On Demand Response Programs For System Reliability Improvement written by Abdulaziz Almutairi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


Recent years have seen a dramatic worldwide increase in the use of plug-in electric vehicles (PEVs). Their tremendous social, economic, and environmental benefits have made PEVs highly promising alternatives to conventional automobiles powered by internal combustion engines. Continuing government initiatives and technological advances are expected to lead to an even more rapid rise in the PEV penetration in the near future. Despite the important advantages of PEVs, however, their integration also raises new concerns and presents a number of special difficulties to the power system reliability. There is in fact recognized need to address the challenges imposed by PEV charging loads, to study their adverse impact on overall system reliability, and to determine whether existing generation capacity is sufficient for accommodating these new types of loads with their high penetration levels and different uncertainty characteristics. This thesis presents a comprehensive reliability framework for incorporating different PEV charging load models into the evaluation of generation adequacy. The proposed framework comprises special treatment and innovative models to achieve an accurate determination of the impact of PEV load models on reliability. First, a goodness-of-fit statistical analysis determines the probability distribution functions (PDFs) that best reflect the main characteristics of driver behaviour. Second, robust and detailed stochastic methods are developed for modeling different charging scenarios (uncontrolled charging and charging based on TOU pricing). These models are based on the use of a Monte Carlo simulation in conjunction with the fitted PDFs to generate and assess a large number of possible scenarios while handling the uncertainties associated with driver behaviour, penetration levels, charging levels, battery capacities, and customer response to TOU pricing. When PEV charging loads become a significant factor in power systems and PEV charging times are uncontrolled, they are expected to cause a severe risk to system reliability, especially at higher PEV penetration and charging levels. Solutions that maintain an acceptable level of system reliability and ensure adequate generation capacity must therefore be found. Proposed in this thesis is novel reliability-based frameworks for the application of different DR programs for use with PEV charging loads. The proposed frameworks are in line with the recent trend toward investigating solutions at the demand side and exploiting the existing flexibility to help improve reliability. The first framework is proposed for incorporating PEV charging loads to respond to dynamic critical events. The framework involves two models: the first determines the time and demand for critical system events, when system supply facilities are unable to meet PEV loads, and the second assesses the feasibility of PEV owner response to critical events. The second framework is proposed for designing time-of-use (TOU) schedules to mitigate the impact of uncontrolled PEV charging load. The proposed framework involves the use of different stochastics simulation models, visualization approaches, and expert rules that help to arrive at proper TOU schedules for PEV charging load.



Laboratory Testing And Field Measurement Of Plug In Electric Vehicle Pev Grid Impacts


Laboratory Testing And Field Measurement Of Plug In Electric Vehicle Pev Grid Impacts
DOWNLOAD
Author : Gilbert Montes
language : en
Publisher:
Release Date : 2015

Laboratory Testing And Field Measurement Of Plug In Electric Vehicle Pev Grid Impacts written by Gilbert Montes and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Electric power distribution categories.




Smart Pev Charging Station Operation And Design Considering Distribution System Impact


Smart Pev Charging Station Operation And Design Considering Distribution System Impact
DOWNLOAD
Author : Omar Hafez
language : en
Publisher:
Release Date : 2016

Smart Pev Charging Station Operation And Design Considering Distribution System Impact written by Omar Hafez and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Battery chargers categories.


Penetration of plug-in electric vehicles (PEVs) into the market is expected to be large in the near future. Also, as stated by the Ontario Ministry of Transportation, the province is investing $20 million from Ontario's Green Investment Fund to build nearly 500 electric vehicle charging stations (EVCSs) at over 250 locations in Ontario by 2017. Therefore, estimating PEV charging demand at an EVCS with their complex charging behavior, their impact on the power grid, and the optimal design of EVCS need be investigated. This thesis first presents a queuing analysis based method for modeling the 24-hour charging load profile of EVCSs. The queuing model considers the arrival of PEVs as a non-homogeneous Poisson process with different arrival rates over the day; considering customer convenience and charging price as the factors that influence the hourly arrival rate of vehicles at the EVCS. One of the main contributions of the thesis is to model the PEV service time considering the state-of-charge of the battery and the effect of the battery charging behavior. The impact of PEV load models on distribution systems is studied for a deterministic case, and the impact of uncertainties is examined using the stochastic optimal power flow and Model Predictive Control approaches. The thesis presents a novel mathematical model for representing the total charging load at an EVCS in terms of controllable parameters; the load model developed using a queuing model followed by a neural network (NN). The queuing model constructs a data set of PEV charging parameters which are input to the NN to determine the controllable EVCS load model. The smart EVCS load is a function of the number of PEVs charging simultaneously, total charging current, arrival rate, and time; and various class of PEVs. The EVCS load is integrated within a distribution operations framework to determine the optimal operation and smart charging schedules of the EVCS. Objective functions from the perspective of the local distribution company (LDC) and EVCS owner are considered for studies. The performance of a smart EVCS vis-à-vis an uncontrolled EVCS is examined to emphasize the demand response (DR) contributions of a smart EVCS and its integration into distribution operations. Finally, the thesis presents the optimal design of an EVCS with the goal of minimizing the life-cycle cost, while taking into account environmental emissions. Different supply options such as renewable energy technology based and diesel generation, with realistic inputs on their physical, operating and economic characteristics are considered, in order to arrive at the optimal design of EVCS. The charging demand of the EVCS is estimated considering real drive data. Analysis is also carried out to compare the economics of a grid-connected EVCS with an isolated EVCS and the optimal break-even distance is determined. Also, the EVCS is assumed to be connected to the grid as a smart energy hub based on different supply options.



Overcoming Barriers To Electric Vehicle Deployment


Overcoming Barriers To Electric Vehicle Deployment
DOWNLOAD
Author : National Research Council
language : en
Publisher: National Academies Press
Release Date : 2013-06-18

Overcoming Barriers To Electric Vehicle Deployment written by National Research Council and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-18 with Technology & Engineering categories.


The electric vehicle offers many promises-increasing U.S. energy security by reducing petroleum dependence, contributing to climate-change initiatives by decreasing greenhouse gas (GHG) emissions, stimulating long-term economic growth through the development of new technologies and industries, and improving public health by improving local air quality. There are, however, substantial technical, social, and economic barriers to widespread adoption of electric vehicles, including vehicle cost, small driving range, long charging times, and the need for a charging infrastructure. In addition, people are unfamiliar with electric vehicles, are uncertain about their costs and benefits, and have diverse needs that current electric vehicles might not meet. Although a person might derive some personal benefits from ownership, the costs of achieving the social benefits, such as reduced GHG emissions, are borne largely by the people who purchase the vehicles. Given the recognized barriers to electric-vehicle adoption, Congress asked the Department of Energy (DOE) to commission a study by the National Academies to address market barriers that are slowing the purchase of electric vehicles and hindering the deployment of supporting infrastructure. As a result of the request, the National Research Council (NRC)-a part of the National Academies-appointed the Committee on Overcoming Barriers to Electric-Vehicle Deployment. This committee documented their findings in two reports-a short interim report focused on near-term options, and a final comprehensive report. Overcoming Barriers to Electric-Vehicle Deployment fulfills the request for the short interim report that addresses specifically the following issues: infrastructure needs for electric vehicles, barriers to deploying the infrastructure, and possible roles of the federal government in overcoming the barriers. This report also includes an initial discussion of the pros and cons of the possible roles. This interim report does not address the committee's full statement of task and does not offer any recommendations because the committee is still in its early stages of data-gathering. The committee will continue to gather and review information and conduct analyses through late spring 2014 and will issue its final report in late summer 2014. Overcoming Barriers to Electric-Vehicle Deployment focuses on the light-duty vehicle sector in the United States and restricts its discussion of electric vehicles to plug-in electric vehicles (PEVs), which include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The common feature of these vehicles is that their batteries are charged by being plugged into the electric grid. BEVs differ from PHEVs because they operate solely on electricity stored in a battery (that is, there is no other power source); PHEVs have internal combustion engines that can supplement the electric power train. Although this report considers PEVs generally, the committee recognizes that there are fundamental differences between PHEVs and BEVs.



Plug In Electric Vehicle Fast Charge Station Operational Analysis With Integrated Renewables


Plug In Electric Vehicle Fast Charge Station Operational Analysis With Integrated Renewables
DOWNLOAD
Author : Mike Simpson
language : en
Publisher:
Release Date : 2012

Plug In Electric Vehicle Fast Charge Station Operational Analysis With Integrated Renewables written by Mike Simpson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Battery chargers categories.


The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose "range anxiety" in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.