Artificial Intelligence In Finance

DOWNLOAD
Download Artificial Intelligence In Finance PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence In Finance book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Blockchain Artificial Intelligence And Financial Services
DOWNLOAD
Author : Sean Stein Smith
language : en
Publisher: Springer Nature
Release Date : 2019-11-15
Blockchain Artificial Intelligence And Financial Services written by Sean Stein Smith and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-15 with Business & Economics categories.
Blockchain technology and artificial intelligence (AI) have the potential to transform how the accounting and financial services industries engage with the business, stakeholder and consumer communities. Presenting a blend of technical analysis with current and future applications, this book provides professionals with an action plan to embrace and move forward with these new technologies in financial and accounting organizations. It is written in a conversational style that is unbiased and objective, replacing jargon and technical details with real world case examples.
Machine Learning In Finance
DOWNLOAD
Author : Matthew F. Dixon
language : en
Publisher: Springer Nature
Release Date : 2020-07-01
Machine Learning In Finance written by Matthew F. Dixon and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-01 with Business & Economics categories.
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
The Ai Book
DOWNLOAD
Author : Ivana Bartoletti
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-29
The Ai Book written by Ivana Bartoletti and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Business & Economics categories.
Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important
Artificial Intelligence In Economics And Finance Theories
DOWNLOAD
Author : Tankiso Moloi
language : en
Publisher: Springer Nature
Release Date : 2020-05-07
Artificial Intelligence In Economics And Finance Theories written by Tankiso Moloi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-07 with Computers categories.
As Artificial Intelligence (AI) seizes all aspects of human life, there is a fundamental shift in the way in which humans are thinking of and doing things. Ordinarily, humans have relied on economics and finance theories to make sense of, and predict concepts such as comparative advantage, long run economic growth, lack or distortion of information and failures, role of labour as a factor of production and the decision making process for the purpose of allocating resources among other theories. Of interest though is that literature has not attempted to utilize these advances in technology in order to modernize economic and finance theories that are fundamental in the decision making process for the purpose of allocating scarce resources among other things. With the simulated intelligence in machines, which allows machines to act like humans and to some extent even anticipate events better than humans, thanks to their ability to handle massive data sets, this book will use artificial intelligence to explain what these economic and finance theories mean in the context of the agent wanting to make a decision. The main feature of finance and economic theories is that they try to eliminate the effects of uncertainties by attempting to bring the future to the present. The fundamentals of this statement is deeply rooted in risk and risk management. In behavioural sciences, economics as a discipline has always provided a well-established foundation for understanding uncertainties and what this means for decision making. Finance and economics have done this through different models which attempt to predict the future. On its part, risk management attempts to hedge or mitigate these uncertainties in order for “the planner” to reach the favourable outcome. This book focuses on how AI is to redefine certain important economic and financial theories that are specifically used for the purpose of eliminating uncertainties so as to allow agents to make informed decisions. In effect, certain aspects of finance and economic theories cannot be understood in their entirety without the incorporation of AI.
Applications Of Artificial Intelligence In Business And Finance 5 0
DOWNLOAD
Author : Richa Goel
language : en
Publisher: CRC Press
Release Date : 2024-12-06
Applications Of Artificial Intelligence In Business And Finance 5 0 written by Richa Goel and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-06 with Computers categories.
This new book provides a valuable overview of how artificial intelligence (AI) applications are transforming global businesses and financial organizations, looking at the newest artificial intelligence-based solutions for e-commerce, corporate management, finance, banking and trading, and more. Chapters look at using AI and machine learning techniques to forecast and assess financial risks such as liquidity risk, volatility risk, and credit risk. The book also describes the use of natural language processing and text mining paired with machine learning models to assist in guiding sophisticated investors and corporate managers in financial decision making. Other topics include cryptocurrency in emerging markets; the role of artificial intelligence in making a positive impact on sustainable development; the use of fintech for micro, small and medium enterprises; the role of AI i financial education; the application of artificial intelligence in cyber security; and more.
The Essentials Of Machine Learning In Finance And Accounting
DOWNLOAD
Author : Mohammad Zoynul Abedin
language : en
Publisher: Routledge
Release Date : 2021-06-20
The Essentials Of Machine Learning In Finance And Accounting written by Mohammad Zoynul Abedin and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-20 with Business & Economics categories.
This book introduces machine learning in finance and illustrates how we can use computational tools in numerical finance in real-world context. These computational techniques are particularly useful in financial risk management, corporate bankruptcy prediction, stock price prediction, and portfolio management. The book also offers practical and managerial implications of financial and managerial decision support systems and how these systems capture vast amount of financial data. Business risk and uncertainty are two of the toughest challenges in the financial industry. This book will be a useful guide to the use of machine learning in forecasting, modeling, trading, risk management, economics, credit risk, and portfolio management.
Advances In Financial Machine Learning
DOWNLOAD
Author : Marcos Lopez de Prado
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-21
Advances In Financial Machine Learning written by Marcos Lopez de Prado and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-21 with Business & Economics categories.
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Explainable Artificial Intelligence Based On Neuro Fuzzy Modeling With Applications In Finance
DOWNLOAD
Author : Tom Rutkowski
language : en
Publisher: Springer Nature
Release Date : 2021-06-07
Explainable Artificial Intelligence Based On Neuro Fuzzy Modeling With Applications In Finance written by Tom Rutkowski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-07 with Technology & Engineering categories.
The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. The vast majority of AI models work like black box models. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations. Therefore, the development of artificial intelligence cannot ignore the need for interpretable, transparent, and explainable models. First, the main idea of the explainable recommenders is outlined within the background of neuro-fuzzy systems. In turn, various novel recommenders are proposed, each characterized by achieving high accuracy with a reasonable number of interpretable fuzzy rules. The main part of the book is devoted to a very challenging problem of stock market recommendations. An original concept of the explainable recommender, based on patterns from previous transactions, is developed; it recommends stocks that fit the strategy of investors, and its recommendations are explainable for investment advisers.
Artificial Intelligence For Financial Markets
DOWNLOAD
Author : Thomas Barrau
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Artificial Intelligence For Financial Markets written by Thomas Barrau and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Mathematics categories.
This book introduces the novel artificial intelligence technique of polymodels and applies it to the prediction of stock returns. The idea of polymodels is to describe a system by its sensitivities to an environment, and to monitor it, imitating what a natural brain does spontaneously. In practice this involves running a collection of non-linear univariate models. This very powerful standalone technique has several advantages over traditional multivariate regressions. With its easy to interpret results, this method provides an ideal preliminary step towards the traditional neural network approach. The first two chapters compare the technique with other regression alternatives and introduces an estimation method which regularizes a polynomial regression using cross-validation. The rest of the book applies these ideas to financial markets. Certain equity return components are predicted using polymodels in very different ways, and a genetic algorithm is described which combines these different predictions into a single portfolio, aiming to optimize the portfolio returns net of transaction costs. Addressed to investors at all levels of experience this book will also be of interest to both seasoned and non-seasoned statisticians.
Artificial Intelligence For Finance Executives
DOWNLOAD
Author : Alexis Besse
language : en
Publisher:
Release Date : 2021-03-20
Artificial Intelligence For Finance Executives written by Alexis Besse and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-20 with categories.
We often hear that AI is revolutionising the financial sector, like no other technology has done before. This book looks beyond these clichés and explores all aspects of this transformation at a deep level. It spells out a vision for the future and answers many questions that are routinely ignored. What do we mean by Artificial Intelligence in finance? How do we move past the myths and misconceptions to reveal the key driving forces? What are the industry trends that align with this transformation? Is it the explosion of digital touchpoints in retail, the reduced risk taking by investment banks, or the ascent of passive funds in asset management? How do we develop concrete use cases from idea generation to production? How do we engineer systems to make accurate predictions, offer recommendations to clients, or analyse unstructured news data? How do we build a successful data-driven organisation? What are the key pitfalls to avoid? Is it about culture, data governance, or management vision? What are the risks specific to developing AI technologies? Can we humans understand and explain what the machines produce for us? Can we trust their predictions or actions? What is the role of alternative data in all this? How can we put it to use for augmented insight? What are the problems that AI is well equipped to solve? Is it all about neural networks and deep learning, as we regularly hear in the popular press? How do we understand human language, a task so important to the financial analyst? The book is packed with concrete examples from the various disciplines of finance. Interested readers will also develop a deep understanding of AI algorithms - presented in plain English - and learn how to solve the most challenging problems. But first and foremost, it is a practical book that equips finance executives with everything they need to understand this transformation and to become agents of change themselves.