Basic Concepts Of Data Mining

DOWNLOAD
Download Basic Concepts Of Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Basic Concepts Of Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Mining And Analysis
DOWNLOAD
Author : Mohammed J. Zaki
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-12
Data Mining And Analysis written by Mohammed J. Zaki and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Computers categories.
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Data Mining Concepts And Techniques
DOWNLOAD
Author : Jiawei Han
language : en
Publisher: Elsevier
Release Date : 2011-06-09
Data Mining Concepts And Techniques written by Jiawei Han and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-09 with Computers categories.
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Data Mining And Machine Learning
DOWNLOAD
Author : Mohammed J. Zaki
language : en
Publisher:
Release Date : 2019-12
Data Mining And Machine Learning written by Mohammed J. Zaki and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12 with Data mining categories.
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Principles Of Data Mining
DOWNLOAD
Author : Max Bramer
language : en
Publisher: Springer
Release Date : 2016-11-09
Principles Of Data Mining written by Max Bramer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-09 with Computers categories.
This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.
Data Mining
DOWNLOAD
Author : Mehmed Kantardzic
language : en
Publisher: John Wiley & Sons
Release Date : 2019-10-23
Data Mining written by Mehmed Kantardzic and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-23 with Computers categories.
Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author—a noted expert on the topic—explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: • Explores big data and cloud computing • Examines deep learning • Includes information on convolutional neural networks (CNN) • Offers reinforcement learning • Contains semi-supervised learning and S3VM • Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field.
Data Mining
DOWNLOAD
Author : Mehmed Kantardzic
language : en
Publisher: John Wiley & Sons
Release Date : 2011-08-16
Data Mining written by Mehmed Kantardzic and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-16 with Computers categories.
This book reviews state-of-the-art methodologies and techniques for analyzing enormous quantities of raw data in high-dimensional data spaces, to extract new information for decision making. The goal of this book is to provide a single introductory source, organized in a systematic way, in which we could direct the readers in analysis of large data sets, through the explanation of basic concepts, models and methodologies developed in recent decades. If you are an instructor or professor and would like to obtain instructor’s materials, please visit http://booksupport.wiley.com If you are an instructor or professor and would like to obtain a solutions manual, please send an email to: [email protected]
Modern Data Warehousing Mining And Visualization
DOWNLOAD
Author : George M. Marakas
language : en
Publisher:
Release Date : 2003
Modern Data Warehousing Mining And Visualization written by George M. Marakas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Business & Economics categories.
For undergraduate/graduate-level Data Mining or Data Warehousing courses in Information Systems or Operations Management Departments electives. Taking a multidisciplinary user/manager approach, this text looks at data warehousing technologies necessary to support the business processes of the twenty-first century. Using a balanced professional and conversational approach, it explores the basic concepts of data mining, warehousing, and visualization with an emphasis on both technical and managerial issues and the implication of these modern emerging technologies on those issues. Data mining and visualization exercises using an included fully-enabled, but time-limited version of Megaputer's PolyAnalyst and TextAnalyst data mining and visualization software give students hands-on experience with real-world applications.
Predictive Analytics And Data Mining
DOWNLOAD
Author : Vijay Kotu
language : en
Publisher: Morgan Kaufmann
Release Date : 2014-11-27
Predictive Analytics And Data Mining written by Vijay Kotu and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Computers categories.
Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples
Data Mining
DOWNLOAD
Author : Florin Gorunescu
language : en
Publisher: Springer
Release Date : 2013-05-29
Data Mining written by Florin Gorunescu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-29 with Technology & Engineering categories.
The knowledge discovery process is as old as Homo sapiens. Until some time ago this process was solely based on the ‘natural personal' computer provided by Mother Nature. Fortunately, in recent decades the problem has begun to be solved based on the development of the Data mining technology, aided by the huge computational power of the 'artificial' computers. Digging intelligently in different large databases, data mining aims to extract implicit, previously unknown and potentially useful information from data, since “knowledge is power”. The goal of this book is to provide, in a friendly way, both theoretical concepts and, especially, practical techniques of this exciting field, ready to be applied in real-world situations. Accordingly, it is meant for all those who wish to learn how to explore and analysis of large quantities of data in order to discover the hidden nugget of information.
Data Preprocessing In Data Mining
DOWNLOAD
Author : Salvador García
language : en
Publisher: Springer
Release Date : 2014-08-30
Data Preprocessing In Data Mining written by Salvador García and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-30 with Technology & Engineering categories.
Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.