[PDF] Data For Learning - eBooks Review

Data For Learning


Data For Learning
DOWNLOAD

Download Data For Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data For Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.



Big Data And Learning Analytics In Higher Education


Big Data And Learning Analytics In Higher Education
DOWNLOAD
Author : Ben Kei Daniel
language : en
Publisher: Springer
Release Date : 2016-08-27

Big Data And Learning Analytics In Higher Education written by Ben Kei Daniel and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-27 with Education categories.


​This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning​. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns​.



Transforming Teaching And Learning Through Data Driven Decision Making


Transforming Teaching And Learning Through Data Driven Decision Making
DOWNLOAD
Author : Ellen B. Mandinach
language : en
Publisher: Corwin Press
Release Date : 2012-04-10

Transforming Teaching And Learning Through Data Driven Decision Making written by Ellen B. Mandinach and has been published by Corwin Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-10 with Business & Economics categories.


"Gathering data and using it to inform instruction is a requirement for many schools, yet educators are not necessarily formally trained in how to do it. This book helps bridge the gap between classroom practice and the principles of educational psychology. Teachers will find cutting-edge advances in research and theory on human learning and teaching in an easily understood and transferable format. The text's integrated model shows teachers, school leaders, and district administrators how to establish a data culture and transform quantitative and qualitative data into actionable knowledge based on: assessment; statistics; instructional and differentiated psychology; classroom management."--Publisher's description.



Big Data In Education


Big Data In Education
DOWNLOAD
Author : Ben Williamson
language : en
Publisher: SAGE
Release Date : 2017-07-24

Big Data In Education written by Ben Williamson and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-24 with Education categories.


Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment!



Deep Learning With Structured Data


Deep Learning With Structured Data
DOWNLOAD
Author : Mark Ryan
language : en
Publisher: Manning
Release Date : 2020-12-29

Deep Learning With Structured Data written by Mark Ryan and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-29 with Computers categories.


Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps



Learning From Data


Learning From Data
DOWNLOAD
Author : Yaser S. Abu-Mostafa
language : en
Publisher:
Release Date : 2012-01-01

Learning From Data written by Yaser S. Abu-Mostafa and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-01 with Machine learning categories.




Intelligent Systems And Learning Data Analytics In Online Education


Intelligent Systems And Learning Data Analytics In Online Education
DOWNLOAD
Author : Santi Caballé
language : en
Publisher: Academic Press
Release Date : 2021-06-15

Intelligent Systems And Learning Data Analytics In Online Education written by Santi Caballé and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-15 with Computers categories.


Intelligent Systems and Learning Data Analytics in Online Education provides novel artificial intelligence (AI) and analytics-based methods to improve online teaching and learning. This book addresses key problems such as attrition and lack of engagement in MOOCs and online learning in general. This book explores the state of the art of artificial intelligence, software tools and innovative learning strategies to provide better understanding and solutions to the various challenges of current e-learning in general and MOOC education. In particular, Intelligent Systems and Learning Data Analytics in Online Education shares stimulating theoretical and practical research from leading international experts. This publication provides useful references for educational institutions, industry, academic researchers, professionals, developers, and practitioners to evaluate and apply. - Presents the application of innovative AI techniques to collaborative learning activities - Offers strategies to provide automatic and effective tutoring to students' activities - Offers methods to collect, analyze and correctly visualize learning data in educational environments



Learning With Big Data


Learning With Big Data
DOWNLOAD
Author : Viktor Mayer-Schönberger
language : en
Publisher: HarperCollins
Release Date : 2014-03-04

Learning With Big Data written by Viktor Mayer-Schönberger and has been published by HarperCollins this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-04 with Education categories.


Homework assignments that learn from students. Courses tailored to fit individual pupils. Textbooks that talk back. This is tomorrow’s education landscape, thanks to the power of big data. These advances go beyond online courses. As the New York Times-bestselling authors of Big Data explain, the truly fascinating changes are actually occurring in how we measure students’ progress and how we can use that data to improve education for everyone, in real time, both on- and offline. Learning with Big Data offers an eye-opening, insight-packed tour through these new trends, for educators, administrators, and readers interested in the latest developments in business and technology.



Using Data To Improve Learning


Using Data To Improve Learning
DOWNLOAD
Author : Anthony Shaddock
language : en
Publisher: ACER Press
Release Date : 2014-02-01

Using Data To Improve Learning written by Anthony Shaddock and has been published by ACER Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-01 with Education categories.


Using Data to Improve Learning: A practical guide for busy teachers explains how teachers can incorporate 'no-frills' engagement with data, collected by themselves and others, into day-to-day teaching so that the process is useful, empowering and enjoyable. It presents strategies that are practical enough to attract teachers' interest, feasible enough to implement in ongoing and sustainable ways, and rigorous enough to make immediate and positive differences to teaching and learning.