[PDF] Data Models And Analysis - eBooks Review

Data Models And Analysis


Data Models And Analysis
DOWNLOAD

Download Data Models And Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Models And Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Analysis Data Modeling And Classification


Data Analysis Data Modeling And Classification
DOWNLOAD
Author : Martin E. Modell
language : en
Publisher: McGraw-Hill Companies
Release Date : 1992

Data Analysis Data Modeling And Classification written by Martin E. Modell and has been published by McGraw-Hill Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with Computers categories.


From a widely published, international expert in both the theory and practical applications of the entity-relationship approach, this reference takes the reader from data entity analysis at the enterprise level through data element analysis and physical design considerations.



Lifetime Data Models In Reliability And Survival Analysis


Lifetime Data Models In Reliability And Survival Analysis
DOWNLOAD
Author : Nicholas P. Jewell
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

Lifetime Data Models In Reliability And Survival Analysis written by Nicholas P. Jewell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.


Statistical models and methods for lifetime and other time-to-event data are widely used in many fields, including medicine, the environmental sciences, actuarial science, engineering, economics, management, and the social sciences. For example, closely related statistical methods have been applied to the study of the incubation period of diseases such as AIDS, the remission time of cancers, life tables, the time-to-failure of engineering systems, employment duration, and the length of marriages. This volume contains a selection of papers based on the 1994 International Research Conference on Lifetime Data Models in Reliability and Survival Analysis, held at Harvard University. The conference brought together a varied group of researchers and practitioners to advance and promote statistical science in the many fields that deal with lifetime and other time-to-event-data. The volume illustrates the depth and diversity of the field. A few of the authors have published their conference presentations in the new journal Lifetime Data Analysis (Kluwer Academic Publishers).



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Applied Statistical Modeling And Data Analytics


Applied Statistical Modeling And Data Analytics
DOWNLOAD
Author : Srikanta Mishra
language : en
Publisher: Elsevier
Release Date : 2017-10-27

Applied Statistical Modeling And Data Analytics written by Srikanta Mishra and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-27 with Science categories.


Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications



Hands On Big Data Modeling


Hands On Big Data Modeling
DOWNLOAD
Author : James Lee
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-30

Hands On Big Data Modeling written by James Lee and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.


Solve all big data problems by learning how to create efficient data models Key FeaturesCreate effective models that get the most out of big dataApply your knowledge to datasets from Twitter and weather data to learn big dataTackle different data modeling challenges with expert techniques presented in this bookBook Description Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you’ll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you’ll work with structured and semi-structured data with the help of real-life examples. Once you’ve got to grips with the basics, you’ll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You’ll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you’ll be able to design and develop efficient data models for varying data sizes easily and efficiently. What you will learnGet insights into big data and discover various data modelsExplore conceptual, logical, and big data modelsUnderstand how to model data containing different file typesRun through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modelingCreate data models such as Graph Data and Vector SpaceModel structured and unstructured data using Python and RWho this book is for This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.



The Data Model Resource Book Volume 1


The Data Model Resource Book Volume 1
DOWNLOAD
Author : Len Silverston
language : en
Publisher: Wiley
Release Date : 2001-03-21

The Data Model Resource Book Volume 1 written by Len Silverston and has been published by Wiley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-03-21 with Computers categories.


A quick and reliable way to build proven databases for core business functions Industry experts raved about The Data Model Resource Book when it was first published in March 1997 because it provided a simple, cost-effective way to design databases for core business functions. Len Silverston has now revised and updated the hugely successful 1st Edition, while adding a companion volume to take care of more specific requirements of different businesses. This updated volume provides a common set of data models for specific core functions shared by most businesses like human resources management, accounting, and project management. These models are standardized and are easily replicated by developers looking for ways to make corporate database development more efficient and cost effective. This guide is the perfect complement to The Data Model Resource CD-ROM, which is sold separately and provides the powerful design templates discussed in the book in a ready-to-use electronic format. A free demonstration CD-ROM is available with each copy of the print book to allow you to try before you buy the full CD-ROM.



Developing High Quality Data Models


Developing High Quality Data Models
DOWNLOAD
Author : Matthew West
language : en
Publisher: Elsevier
Release Date : 2011-02-07

Developing High Quality Data Models written by Matthew West and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-07 with Computers categories.


Developing High Quality Data Models provides an introduction to the key principles of data modeling. It explains the purpose of data models in both developing an Enterprise Architecture and in supporting Information Quality; common problems in data model development; and how to develop high quality data models, in particular conceptual, integration, and enterprise data models. The book is organized into four parts. Part 1 provides an overview of data models and data modeling including the basics of data model notation; types and uses of data models; and the place of data models in enterprise architecture. Part 2 introduces some general principles for data models, including principles for developing ontologically based data models; and applications of the principles for attributes, relationship types, and entity types. Part 3 presents an ontological framework for developing consistent data models. Part 4 provides the full data model that has been in development throughout the book. The model was created using Jotne EPM Technologys EDMVisualExpress data modeling tool. This book was designed for all types of modelers: from those who understand data modeling basics but are just starting to learn about data modeling in practice, through to experienced data modelers seeking to expand their knowledge and skills and solve some of the more challenging problems of data modeling. - Uses a number of common data model patterns to explain how to develop data models over a wide scope in a way that is consistent and of high quality - Offers generic data model templates that are reusable in many applications and are fundamental for developing more specific templates - Develops ideas for creating consistent approaches to high quality data models



Data Analysis Using Regression And Multilevel Hierarchical Models


Data Analysis Using Regression And Multilevel Hierarchical Models
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: Cambridge University Press
Release Date : 2007

Data Analysis Using Regression And Multilevel Hierarchical Models written by Andrew Gelman and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.


This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.



Correlated Data Analysis Modeling Analytics And Applications


Correlated Data Analysis Modeling Analytics And Applications
DOWNLOAD
Author : Xue-Kun Song
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-27

Correlated Data Analysis Modeling Analytics And Applications written by Xue-Kun Song and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-27 with Mathematics categories.


This book covers recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to cover a broader range of data types than the traditional generalized linear models. The reader is provided with a systematic treatment for the topic of estimating functions, and both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to the discussions on marginal models and mixed-effects models, this book covers new topics on joint regression analysis based on Gaussian copulas.



Mastering Data Modeling


Mastering Data Modeling
DOWNLOAD
Author : John Carlis
language : en
Publisher: Addison-Wesley Professional
Release Date : 2000-11-10

Mastering Data Modeling written by John Carlis and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-11-10 with Computers categories.


Data modeling is one of the most critical phases in the database application development process, but also the phase most likely to fail. A master data modeler must come into any organization, understand its data requirements, and skillfully model the data for applications that most effectively serve organizational needs. Mastering Data Modeling is a complete guide to becoming a successful data modeler. Featuring a requirements-driven approach, this book clearly explains fundamental concepts, introduces a user-oriented data modeling notation, and describes a rigorous, step-by-step process for collecting, modeling, and documenting the kinds of data that users need. Assuming no prior knowledge, Mastering Data Modeling sets forth several fundamental problems of data modeling, such as reconciling the software developer's demand for rigor with the users' equally valid need to speak their own (sometimes vague) natural language. In addition, it describes the good habits that help you respond to these fundamental problems. With these good habits in mind, the book describes the Logical Data Structure (LDS) notation and the process of controlled evolution by which you can create low-cost, user-approved data models that resist premature obsolescence. Also included is an encyclopedic analysis of all data shapes that you will encounter. Most notably, the book describes The Flow, a loosely scripted process by which you and the users gradually but continuously improve an LDS until it faithfully represents the information needs. Essential implementation and technology issues are also covered. You will learn about such vital topics as: The fundamental problems of data modeling The good habits that help a data modeler be effective and economical LDS notation, which encourages these good habits How to read an LDS aloud--in declarative English sentences How to write a well-formed (syntactically correct) LDS How to get users to name the parts of an LDS with words from their own business vocabulary How to visualize data for an LDS A catalog of LDS shapes that recur throughout all data models The Flow--the template for your conversations with users How to document an LDS for users, data modelers, and technologists How to map an LDS to a relational schema How LDS differs from other notations and why "Story interludes" appear throughout the book, illustrating real-world successes of the LDS notation and controlled evolution process. Numerous exercises help you master critical skills. In addition, two detailed, annotated sample conversations with users show you the process of controlled evolution in action.