Data Science Avec Python

DOWNLOAD
Download Data Science Avec Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Avec Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Science From Scratch With Python
DOWNLOAD
Author : Peter Morgan
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2018-08-21
Data Science From Scratch With Python written by Peter Morgan and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-21 with Data mining categories.
***** BUY NOW (will soon return to 24.77 $) ***** MONEY BACK GUARANTEE BY AMAZON (See Below FAQ) *****Are you thinking of learning data science from scratch using Python? (For Beginners)If you are looking for a complete step-by-step guide to data science using Python from scratch, this book is for you. After his great success with his first book "Data Analysis from Scratch with Python," Peter Morgan publishes his second book focusing now in data science and machine learning. It is considered by practitioners as the easiest guide ever written in this domain. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. Readers are advised to adopt a hands on approach, which would lead to better mental representations. Step by Step Guide and Visual Illustrations and ExamplesThe Book give complete instructions for manipulating, processing, cleaning, modeling and crunching datasets in Python. This is a hands-on guide with practical case studies of data analysis problems effectively. You will learn, pandas, NumPy, IPython, and Jupiter in the Process. Target Users Beginners who want to approach data science, but are too afraid of complex math to start Newbies in computer science techniques and data science Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on data science What's Inside This Book? Part 1: Data Science Fundamentals, Concepts and Algorithms Introduction Statistics Probability Bayes' Theorem and Naïve Bayes Algorithm Asking the Right Question Data Acquisition Data Preparation Data Exploration Data Modelling Data Presentation Supervised Learning Algorithms Unsupervised Learning Algorithms Semi-supervised Learning Algorithms Reinforcement Learning Algorithms Overfitting and Underfitting The Bias-Variance Trade-off Feature Extraction and Selection Part 2: Data Science in Practice Overview of Python Programming Language Python Data Science Tools Jupyter Notebook Numerical Python (Numpy) Pandas Scientific Python (Scipy) Matplotlib Scikit-Learn K-Nearest Neighbors Naive Bayes Simple and Multiple Linear Regression Logistic Regression GLM models Decision Trees and Random forest Perceptrons Backpropagation Clustering Natural Language Processing Frequently Asked Questions Q: Does this book include everything I need to become a data science expert?A: Unfortunately, no. This book is designed for readers taking their first steps in data science and machine learning using Python and further learning will be required beyond this book to master all aspects. Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform.***** MONEY BACK GUARANTEE BY AMAZON ***** Editorial Reviews "This is a fantastic book on Python-based data science, data analysis, machine learning, Reinforcement learning and deep learning. As a data scientist with more than 10 years, Peter has had long experience in data science and give in this book the key elements.." - Lei Xia, Data Scientist Expert at Facebook
Applied Data Science With Python And Jupyter
DOWNLOAD
Author : Alex Galea
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31
Applied Data Science With Python And Jupyter written by Alex Galea and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.
Become the master player of data exploration by creating reproducible data processing pipelines, visualizations, and prediction models for your applications. Key FeaturesGet up and running with the Jupyter ecosystem and some example datasetsLearn about key machine learning concepts such as SVM, KNN classifiers, and Random ForestsDiscover how you can use web scraping to gather and parse your own bespoke datasetsBook Description Getting started with data science doesn't have to be an uphill battle. Applied Data Science with Python and Jupyter is a step-by-step guide ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction to these concepts. In this book, you'll learn every aspect of the standard data workflow process, including collecting, cleaning, investigating, visualizing, and modeling data. You'll start with the basics of Jupyter, which will be the backbone of the book. After familiarizing ourselves with its standard features, you'll look at an example of it in practice with our first analysis. In the next lesson, you dive right into predictive analytics, where multiple classification algorithms are implemented. Finally, the book ends by looking at data collection techniques. You'll see how web data can be acquired with scraping techniques and via APIs, and then briefly explore interactive visualizations. What you will learnGet up and running with the Jupyter ecosystemIdentify potential areas of investigation and perform exploratory data analysisPlan a machine learning classification strategy and train classification modelsUse validation curves and dimensionality reduction to tune and enhance your modelsScrape tabular data from web pages and transform it into Pandas DataFramesCreate interactive, web-friendly visualizations to clearly communicate your findingsWho this book is for Applied Data Science with Python and Jupyter is ideal for professionals with a variety of job descriptions across a large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries such as Pandas, Matplotlib, and Pandas providing you a useful head start.
An Introduction To Data Science With Python
DOWNLOAD
Author : Jeffrey S. Saltz
language : en
Publisher: SAGE Publications
Release Date : 2024-05-29
An Introduction To Data Science With Python written by Jeffrey S. Saltz and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-29 with Computers categories.
An Introduction to Data Science with Python by Jeffrey S. Saltz and Jeffery M. Stanton provides readers who are new to Python and data science with a step-by-step walkthrough of the tools and techniques used to analyze data and generate predictive models. After introducing the basic concepts of data science, the book builds on these foundations to explain data science techniques using Python-based Jupyter Notebooks. The techniques include making tables and data frames, computing statistics, managing data, creating data visualizations, and building machine learning models. Each chapter breaks down the process into simple steps and components so students with no more than a high school algebra background will still find the concepts and code intelligible. Explanations are reinforced with linked practice questions throughout to check reader understanding. The book also covers advanced topics such as neural networks and deep learning, the basis of many recent and startling advances in machine learning and artificial intelligence. With their trademark humor and clear explanations, Saltz and Stanton provide a gentle introduction to this powerful data science tool. Included with this title: LMS Cartridge: Import this title’s instructor resources into your school’s learning management system (LMS) and save time. Don′t use an LMS? You can still access all of the same online resources for this title via the password-protected Instructor Resource Site.
Data Science With Python
DOWNLOAD
Author : Rohan Chopra
language : en
Publisher:
Release Date : 2019-07-09
Data Science With Python written by Rohan Chopra and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-09 with Computers categories.
Data Science And Analytics With Python
DOWNLOAD
Author : Jesus Rogel-Salazar
language : en
Publisher: CRC Press
Release Date : 2025-06-03
Data Science And Analytics With Python written by Jesus Rogel-Salazar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-03 with Computers categories.
Since the first edition of “Data Science and Analytics with Python” we have witnessed an unprecedented explosion in the interest and development within the fields of Artificial Intelligence and Machine Learning. This surge has led to the widespread adoption of the book, not just among business practitioners, but also by universities as a key textbook. In response to this growth, this new edition builds upon the success of its predecessor, expanding several sections, updating the code to reflect the latest advancements in Python libraries and modules, and addressing the ever-evolving landscape of generative AI (GenAI). This updated edition ensures that the examples and exercises remain relevant by incorporating the latest features of popular libraries such as Scikit-learn, pandas, and Numpy. Additionally, new sections delve into cutting-edge topics like generative AI, reflecting the advancements and the expanding role these technologies play. This edition also addresses crucial issues of explainability, transparency, and fairness in AI. These topics have rightly gained significant attention in recent years. As AI integrates more deeply into various aspects of our lives, understanding and mitigating biases, ensuring fairness, and maintaining transparency become paramount. This book provides comprehensive coverage of these topics, offering practical insights and guidance for data scientists and analysts. Designed as a practical companion for data analysts and budding data scientists, this book assumes a working knowledge of programming and statistical modelling but aims to guide readers deeper into the wonders of data analytics and machine learning. Maintaining the book's structure, each chapter stands alone as much as possible, allowing readers to use it as a reference as well as a textbook. Whether revisiting fundamental concepts or diving into new, advanced topics, this book offers something valuable for every reader.
3d Data Science With Python
DOWNLOAD
Author : Florent Poux
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2025-04-09
3d Data Science With Python written by Florent Poux and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-09 with Computers categories.
Our physical world is grounded in three dimensions. To create technology that can reason about and interact with it, our data must be 3D too. This practical guide offers data scientists, engineers, and researchers a hands-on approach to working with 3D data using Python. From 3D reconstruction to 3D deep learning techniques, you'll learn how to extract valuable insights from massive datasets, including point clouds, voxels, 3D CAD models, meshes, images, and more. Dr. Florent Poux helps you leverage the potential of cutting-edge algorithms and spatial AI models to develop production-ready systems with a focus on automation. You'll get the 3D data science knowledge and code to: Understand core concepts and representations of 3D data Load, manipulate, analyze, and visualize 3D data using powerful Python libraries Apply advanced AI algorithms for 3D pattern recognition (supervised and unsupervised) Use 3D reconstruction techniques to generate 3D datasets Implement automated 3D modeling and generative AI workflows Explore practical applications in areas like computer vision/graphics, geospatial intelligence, scientific computing, robotics, and autonomous driving Build accurate digital environments that spatial AI solutions can leverage Florent Poux is an esteemed authority in the field of 3D data science who teaches and conducts research for top European universities. He's also head professor at the 3D Geodata Academy and innovation director for French Tech 120 companies.
Practical Data Science With Python 3
DOWNLOAD
Author : Ervin Varga
language : en
Publisher: Apress
Release Date : 2019-09-07
Practical Data Science With Python 3 written by Ervin Varga and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-07 with Computers categories.
Gain insight into essential data science skills in a holistic manner using data engineering and associated scalable computational methods. This book covers the most popular Python 3 frameworks for both local and distributed (in premise and cloud based) processing. Along the way, you will be introduced to many popular open-source frameworks, like, SciPy, scikitlearn, Numba, Apache Spark, etc. The book is structured around examples, so you will grasp core concepts via case studies and Python 3 code. As data science projects gets continuously larger and more complex, software engineering knowledge and experience is crucial to produce evolvable solutions. You'll see how to create maintainable software for data science and how to document data engineering practices. This book is a good starting point for people who want to gain practical skills to perform data science. All the code willbe available in the form of IPython notebooks and Python 3 programs, which allow you to reproduce all analyses from the book and customize them for your own purpose. You'll also benefit from advanced topics like Machine Learning, Recommender Systems, and Security in Data Science. Practical Data Science with Python will empower you analyze data, formulate proper questions, and produce actionable insights, three core stages in most data science endeavors. What You'll Learn Play the role of a data scientist when completing increasingly challenging exercises using Python 3 Work work with proven data science techniques/technologies Review scalable software engineering practices to ramp up data analysis abilities in the realm of Big Data Apply theory of probability, statistical inference, and algebra to understand the data sciencepractices Who This Book Is For Anyone who would like to embark into the realm of data science using Python 3.
Geographic Data Science With Python
DOWNLOAD
Author : Sergio Rey
language : en
Publisher: CRC Press
Release Date : 2023-06-14
Geographic Data Science With Python written by Sergio Rey and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-14 with Science categories.
This book provides the tools, the methods, and the theory to meet the challenges of contemporary data science applied to geographic problems and data. In the new world of pervasive, large, frequent, and rapid data, there are new opportunities to understand and analyze the role of geography in everyday life. Geographic Data Science with Python introduces a new way of thinking about analysis, by using geographical and computational reasoning, it shows the reader how to unlock new insights hidden within data. Key Features: ● Showcases the excellent data science environment in Python. ● Provides examples for readers to replicate, adapt, extend, and improve. ● Covers the crucial knowledge needed by geographic data scientists. It presents concepts in a far more geographic way than competing textbooks, covering spatial data, mapping, and spatial statistics whilst covering concepts, such as clusters and outliers, as geographic concepts. Intended for data scientists, GIScientists, and geographers, the material provided in this book is of interest due to the manner in which it presents geospatial data, methods, tools, and practices in this new field.
Practical Data Science With Python
DOWNLOAD
Author : Nathan George
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-30
Practical Data Science With Python written by Nathan George and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-30 with Computers categories.
Learn to effectively manage data and execute data science projects from start to finish using Python Key FeaturesUnderstand and utilize data science tools in Python, such as specialized machine learning algorithms and statistical modelingBuild a strong data science foundation with the best data science tools available in PythonAdd value to yourself, your organization, and society by extracting actionable insights from raw dataBook Description Practical Data Science with Python teaches you core data science concepts, with real-world and realistic examples, and strengthens your grip on the basic as well as advanced principles of data preparation and storage, statistics, probability theory, machine learning, and Python programming, helping you build a solid foundation to gain proficiency in data science. The book starts with an overview of basic Python skills and then introduces foundational data science techniques, followed by a thorough explanation of the Python code needed to execute the techniques. You'll understand the code by working through the examples. The code has been broken down into small chunks (a few lines or a function at a time) to enable thorough discussion. As you progress, you will learn how to perform data analysis while exploring the functionalities of key data science Python packages, including pandas, SciPy, and scikit-learn. Finally, the book covers ethics and privacy concerns in data science and suggests resources for improving data science skills, as well as ways to stay up to date on new data science developments. By the end of the book, you should be able to comfortably use Python for basic data science projects and should have the skills to execute the data science process on any data source. What you will learnUse Python data science packages effectivelyClean and prepare data for data science work, including feature engineering and feature selectionData modeling, including classic statistical models (such as t-tests), and essential machine learning algorithms, such as random forests and boosted modelsEvaluate model performanceCompare and understand different machine learning methodsInteract with Excel spreadsheets through PythonCreate automated data science reports through PythonGet to grips with text analytics techniquesWho this book is for The book is intended for beginners, including students starting or about to start a data science, analytics, or related program (e.g. Bachelor’s, Master’s, bootcamp, online courses), recent college graduates who want to learn new skills to set them apart in the job market, professionals who want to learn hands-on data science techniques in Python, and those who want to shift their career to data science. The book requires basic familiarity with Python. A "getting started with Python" section has been included to get complete novices up to speed.
Beginning Data Science With Python And Jupyter
DOWNLOAD
Author : Alex Galea
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-05
Beginning Data Science With Python And Jupyter written by Alex Galea and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-05 with Computers categories.
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book Description Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is for This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.