[PDF] Development Of Local Calibration Factors And Design Criteria Values For Mechanistic Empirical Pavement Design - eBooks Review

Development Of Local Calibration Factors And Design Criteria Values For Mechanistic Empirical Pavement Design


Development Of Local Calibration Factors And Design Criteria Values For Mechanistic Empirical Pavement Design
DOWNLOAD

Download Development Of Local Calibration Factors And Design Criteria Values For Mechanistic Empirical Pavement Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Development Of Local Calibration Factors And Design Criteria Values For Mechanistic Empirical Pavement Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Development Of Local Calibration Factors And Design Criteria Values For Mechanistic Empirical Pavement Design


Development Of Local Calibration Factors And Design Criteria Values For Mechanistic Empirical Pavement Design
DOWNLOAD
Author : Bryan Smith
language : en
Publisher:
Release Date : 2015

Development Of Local Calibration Factors And Design Criteria Values For Mechanistic Empirical Pavement Design written by Bryan Smith and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Pavements categories.


A mechanistic-empirical (ME) pavement design procedure allows for analyzing and selecting pavement structures based on predicted distress progression resulting from stresses and strains within the pavement over its design life. The Virginia Department of Transportation (VDOT) has been working toward implementing ME design by characterizing traffic and materials inputs, training with the models and design software, and analyzing current pavement designs in AASHTOware Pavement ME Design software. This study compared the measured performance of asphalt and continuously reinforced concrete pavements (CRCP) from VDOTs Pavement Management System (PMS) records to the predicted performance in AASHTOware Pavement ME Design. Model coefficients in the software were adjusted to match the predicted asphalt pavement permanent deformation, asphalt bottom-up fatigue cracking, and CRCP punchout outputs to the measured values from PMS records. Values for reliability, design life inputs, and distress limits were identified as a starting point for VDOT to consider when using AASHTOware Pavement ME Design through consideration of national guidelines, existing VDOT standards, PMS rating formulas, typical pavement performance at time of overlay, and the data used for local calibration. The model calibration coefficients and design requirement values recommended in this study can be used by VDOT with AASHTOware Pavement ME Design as a starting point to implement the software for design, which should allow for more optimized pavement structures and improve the long-term performance of pavements in Virginia.



Guide For The Local Calibration Of The Mechanistic Empirical Pavement Design Guide


Guide For The Local Calibration Of The Mechanistic Empirical Pavement Design Guide
DOWNLOAD
Author :
language : en
Publisher: AASHTO
Release Date : 2010

Guide For The Local Calibration Of The Mechanistic Empirical Pavement Design Guide written by and has been published by AASHTO this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Technology & Engineering categories.


This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.



Development Of A Simplified Flexible Pavement Design Protocol For New York State Department Of Transportation Based On The Aashto Mechanistic Empirical Pavement Design Guide


Development Of A Simplified Flexible Pavement Design Protocol For New York State Department Of Transportation Based On The Aashto Mechanistic Empirical Pavement Design Guide
DOWNLOAD
Author : Stefan Anton Romanoschi
language : en
Publisher:
Release Date : 2017

Development Of A Simplified Flexible Pavement Design Protocol For New York State Department Of Transportation Based On The Aashto Mechanistic Empirical Pavement Design Guide written by Stefan Anton Romanoschi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


The New York State Department of Transportation (NYSDOT) has used the AASHTO 1993 Design Guide for the design of new flexible pavement structures for more than two decades. The AASHTO 1993 Guide is based on the empirical design equations developed from the data collected in the AASHO Road Test in the early 1960s. A newer pavement design method, called the Mechanistic-Empirical Pavement Design Guide (MEPDG), was developed by the National Cooperative Highway Research Program (NCHRP) to provide a more efficient and accurate design method that is based on sound engineering principles. The MEPDG models have been incorporated in the AASHTOWare Pavement ME Design 2.1 software program. Due to the advanced principles and design capabilities of the AASHTOWare program, NYSDOT decided to implement the MEPDG and calibrate the distress models included in the software for the conditions in the state. This report summarizes the local calibration of the distress models for the Northeast (NE) region of the United States and the development of new design tables for new flexible pavement structures. Design, performance, and traffic data collected on the Long-Term Pavement Performance (LTPP) sites in the NE region of the United States were used to calibrate the distress models. First, the AASHTOWare Pavement ME Design 2.1 with global calibration factors was used to compare the predicted and measured distress values. The local bias was assessed for all distress models except for the longitudinal cracking model; it was found the bias existed for this model even after calibration. The thermal cracking model was not calibrated because of inaccurate measured data. The calibration improved the prediction capability of the rutting, fatigue cracking, and smoothness prediction models. The calibrated AASHTOWare software was used to run design cases for combinations of traffic volume and subgrade soil stiffness (resilient modulus, Mr) for 24 locations in the state of New York. The runs were performed for a road classified as Principal Arterial Interstate, 90% design reliability level, and 15- and 20-year design periods. State-wide average traffic volume parameters and axle load spectra were used to define the traffic. The configuration specified in the current design table used by NYSDOT, which is included in the Comprehensive Pavement Design Manual (CPDM), was followed for the pavement design solutions. The thicknesses for the select granular subgrade materials and the asphalt layer thicknesses were varied to include several values higher and lower than the thickness recommended by the CPDM. The thicknesses of asphalt surface and binder layers were kept constant; only the thickness of the asphalt base layer was changed. For each design combination, the design case with the thinnest asphalt layer for which the predicted distress was less than the performance criteria was selected as the design solution. The design solutions for each of the 24 locations were assembled in design tables. The comparison of the design tables showed that some variation in the design thickness for the asphalt layers exists with thicker asphalt layers being needed for the locations in the upper part of the New York State. The comparison between the new design tables and the table included in the CPDM proved that the new design tables require thinner asphalt layers at low Annual Average Daily Truck Traffic (AADTT) and thicker asphalt layers at high AADTT than the corresponding designs in the CPDM table.



Development Of A Simplified Flexible Pavement Design Protocol For New York State Department Of Transportation Based On Aashto Me Pavement Design Guide


Development Of A Simplified Flexible Pavement Design Protocol For New York State Department Of Transportation Based On Aashto Me Pavement Design Guide
DOWNLOAD
Author : Ali Qays Abdullah
language : en
Publisher:
Release Date : 2015

Development Of A Simplified Flexible Pavement Design Protocol For New York State Department Of Transportation Based On Aashto Me Pavement Design Guide written by Ali Qays Abdullah and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Pavements categories.


New York State Department of Transportation (NYSDOT) has used the AASHTO 1993 Design Guide for the design of new flexible pavement structures for more than three decades. The AASHTO 1993 Guide is based on the empirical relationships developed for the data collected in the AASHO Road Test in the early 1960's. A newer pavement design method, called the Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed by the National Cooperative Highway Research Program to provide a more efficient and accurate design method and based on sound engineering principles. The MEPDG models have been incorporated in the AASHTOWare Pavement ME 2.1 software program that can be purchased from AASHTO. Due to the advanced principles and design capabilities of the AASHTOWare program, NYSDOT decided to implement the MEPDG and calibrate the distress models included in the software for the conditions in the state. The work conducted in this research included the local calibration of the distress models for the North East (NE) region of the United States. Design, performance and traffic data collected on Long Term Pavement Performance (LTPP) sites in the NE region of the United States were used to calibrate the distress models. First, the AASHTOWare Pavement ME 2.1 with global calibration factors was used to compare the predicted and measured distresses, values that were used for model calibration. The local bias was assessed for all distresses models except for the longitudinal cracking model; it was found the bias existed for this model even after calibration. The thermal cracking model was not calibrated because of erroneous measured data. The calibration improved the prediction accuracy for the rutting, fatigue cracking and smoothness prediction models. The AASHTOWare software was used to run design cases for combinations of traffic volume and subgrade soil stiffness (Mr) for twenty-four locations in New York State. The runs were performed for a road classified as Principal Arterial Interstate, the 90% design reliability level and 15 years design period. State-wide average traffic volume parameters and axle load spectra were used to define the traffic. The NYSDOT's Comprehensive Pavement Design Manual (CPDM) was initially used to obtain pavement design solutions. The thicknesses for the select granular subgrade materials and the asphalt layer thicknesses were varied to include several values higher and lower than the thickness recommended by CPDM. The thicknesses of asphalt surface and binder layers were kept constant; only the thickness of the asphalt base layer was changed. For each design combination, the design case with thinnest asphalt layer for which the predicted distress was less the performance criteria was selected as the design solution. The design solutions for each of the 24 locations were assembled in design tables. The comparison of the design tables showed that some variation in the design thickness for the asphalt layers exists even, with thicker asphalt layers being needed for the locations in the Upper part of the New York State. The comparison between the new design tables and the table included in the CPDM proved that the new design tables require thinner asphalt layers at low AADTT and thicker asphalt layers at high AADTT than the corresponding design in the CPDM table. For stiff subgrade soil and low AADTT, the design thicknesses are almost the same in the new design tables and in the CPDM table.



Mechanistic Empirical Pavement Design Guide


Mechanistic Empirical Pavement Design Guide
DOWNLOAD
Author : American Association of State Highway and Transportation Officials
language : en
Publisher: AASHTO
Release Date : 2008

Mechanistic Empirical Pavement Design Guide written by American Association of State Highway and Transportation Officials and has been published by AASHTO this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Pavements categories.




Local Calibration Of The Mepdg For Flexible Pavement Design


Local Calibration Of The Mepdg For Flexible Pavement Design
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2011

Local Calibration Of The Mepdg For Flexible Pavement Design written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Highway engineering categories.


In an effort to move toward pavement designs that employ mechanistic principles, the AASHTO Joint Task Force on Pavements initiated an effort in 1996 to develop an improved pavement design guide. The project called for the development of a design guide that employs existing state-of-the-practice mechanistic-based models and design procedures. The product of this initiative became available in 2004 in the form of software called the Mechanistic-Empirical Pavement Design Guide (MEPDG). The performance prediction models in the MEPDG were calibrated and validated using performance data measured from hundreds of pavement sections across the United States. However, these nationally calibrated performance models in the MEPDG do not necessarily reflect local materials, local construction practices, and local traffic characteristics. Therefore, in order to produce accurate pavement designs for the State of North Carolina, the MEPDG distress prediction models must be recalibrated using local materials, traffic, and environmental data. The North Carolina Department of Transportation (NCDOT) has decided to adopt the MEPDG for future pavement design work and has awarded a series of research projects to North Carolina State University. The primary objective of this study is to calibrate the MEPDG performance prediction models for local materials and conditions using the data and findings generated from this series of research projects. The work presented in this report focuses on four major topics: (1) the development of a GIS-based methodology to enable the extraction of local subgrade soils data from a national soils database; (2) the rutting and fatigue cracking performance characterization of twelve asphalt mixtures commonly used in North Carolina; (3) the characterization of local North Carolina traffic; and (4) calibration of the flexible pavement distress prediction models in the MEPDG to reflect local materials and conditions.



Analysis Of Virginia Specific Traffic Data Inputs For Use With The Mechanistic Empirical Pavement Design Guide


Analysis Of Virginia Specific Traffic Data Inputs For Use With The Mechanistic Empirical Pavement Design Guide
DOWNLOAD
Author : Bryan C. Smith
language : en
Publisher:
Release Date : 2010

Analysis Of Virginia Specific Traffic Data Inputs For Use With The Mechanistic Empirical Pavement Design Guide written by Bryan C. Smith and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Axial loads categories.


This study developed traffic inputs for use with the Guide for the Mechanistic-Empirical Design of New & Rehabilitated Pavement Structures (MEPDG) in Virginia and sought to determine if the predicted distresses showed differences between site-specific and default traffic inputs for flexible and rigid pavements. The axle-load spectra, monthly adjustment factors, vehicle class distribution factors, and number of axles per truck inputs were considered. The predicted distresses based on site-specific traffic inputs from eight interstate and seven primary route weigh-in-motion sites in Virginia were compared to predicted distresses using MEPDG default traffic inputs. These comparisons were performed by use of a normalized difference statistic for each site-specific traffic input and the coefficient of variation for each pavement distress model. In addition, the practical significance for flexible pavements was considered from the difference in the predicted time to failure between site-specific and default traffic inputs. The analysis showed that the effect of the site-specific traffic inputs was generally not statistically significant when the uncertainty of the distress models was considered. However, the site-specific axle-load spectra and vehicle class distribution inputs showed a statistically significant effect on certain predicted distresses for flexible and rigid pavements, respectively. The study recommends that site-specific axle-load spectra data be considered for analysis of flexible pavements. Alternatively, summary (statewide average) axle-load spectra data for analysis of interstate and primary flexible pavements should be considered preferentially over default axle-load spectra. Site-specific vehicle class distribution factors should be considered for analysis of rigid pavements on the interstate system. Alternatively, summary (statewide average) vehicle class distribution factors for analysis of interstate rigid pavements should be considered preferentially over default vehicle class distribution data. Default traffic data are recommended for analysis of primary rigid pavements. This study also recommends that a local calibration process be completed to determine if the predictive models accurately predict the conditions found on Virginia's roadways. If the predictive models are modified, the results may impact the recommendations resulting from this study. The implementation of the recommendations of this study and the use of the MEPDG in general will provide the Virginia Department of Transportation with a more advanced means of designing and analyzing pavements. This should result in optimal designs that are more efficient in terms of initial construction and future maintenance costs.



Calibration Of Mepdg Performance Models For Flexible Pavement Distresses To Local Conditions Of Ontario


Calibration Of Mepdg Performance Models For Flexible Pavement Distresses To Local Conditions Of Ontario
DOWNLOAD
Author : Nelson Fernando Cunha Coelho
language : en
Publisher:
Release Date : 2016

Calibration Of Mepdg Performance Models For Flexible Pavement Distresses To Local Conditions Of Ontario written by Nelson Fernando Cunha Coelho and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


The implementation of the American Association of State Highway and Transportation Officials (AASHTO) Mechanistical-Empirical Pavement Design requires the development of a design procedure that can be used by the agencies and engineering consultants to design new and reconstructed rigid and flexible pavements. To calibrate the design procedure for a region, a large dataset representing the particular local conditions is needed. It includes traffic, climate, site material characteristics, performance requirements and historical data. The performance models were calibrated in North America using the Long Term Pavement Database Program (LTPP), therefore, the models must be calibrated to local conditions in order to obtain more suitable parameters, formulas and predictions. It is expected that calibrated performance models using site-specific data will predict pavement performance approximated to the performance measured in the field. Gathering data related with observed distresses is essential for subsequent comparison with predicted distresses. The primary objective of this project is to calibrate the performance models of flexible pavement distresses, including total rutting (permanent deformation) and asphalt concrete (AC) bottom-up fatigue cracking, to the local conditions of new flexible pavement in Ontario, Canada. Sixteen (16) representative pavement sections from widening and reconfiguration highway projects were selected. Performance data, traffic data, structure information, materials properties and performance data were obtained from site-specific investigation and pavement design reports provided by the Ministry of Transportation Ontario (MTO). The AASHTOWare Pavement ME DesignTM was used to run the initial predictions using the global calibration coefficients. Then, the obtained predicted distresses were compared with the measured distresses to assess for local bias and goodness of fit. The analysis showed that, using the global calibration coefficients, the AASHTOWare model under predicted alligator cracking and over predicted total rutting. Statistical analysis, such as, Regression Analysis and the Microsoft Solver numerical optimization routine were used to find the regression coefficients, using the approach of minimizing the sum of squared error (SSE). Concerning alligator cracking, the local calibration factors have improved the bias and standard error of the estimate (SEE). Plots also showed that points are randomly scattered along equality line and predicted values closer to the measured values. Regarding permanent deformation (rutting), the local calibration factors have improved the bias and standard error of the estimate. The accuracy of the transfer function has increased in comparison to the use of the global calibration values, suggesting that the local calibration procedure has improved the rutting model. Analyzing the plots measured versus predicted, points are better scattered and a shift is clearly noted in the chart from global to local calibration, indicating that local calibration coefficients improved distress estimations.



Local Calibration Of Mechanistic Empirical Pavement Design Guide For North Eastern United States


Local Calibration Of Mechanistic Empirical Pavement Design Guide For North Eastern United States
DOWNLOAD
Author : Shariq A. Momin
language : en
Publisher:
Release Date : 2011

Local Calibration Of Mechanistic Empirical Pavement Design Guide For North Eastern United States written by Shariq A. Momin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.


The Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Cooperative Highway Research Program (NCHRP) 1-37A project is based on mechanistic-empirical analysis of the pavement structure to predict the performance of the pavement under different sets of conditions (traffic, structure and environment). MEPDG takes into account the advanced modeling concepts and pavement performance models in performing the analysis and design of pavement. The mechanistic part of the design concept relies on the application of engineering mechanics to calculate stresses, strains and deformations in the pavement structure induced by the vehicle loads. The empirical part of the concept is based on laboratory developed performance models that are calibrated with the observed distresses in the in-service pavements with known structural properties, traffic loadings, and performances. These models in the MEPDG were calibrated using a national database of pavement performance data (Long Term Pavement Performance, LTPP) and will provide design solution for pavements with a national average performance. In order to improve the performance prediction of the models and the efficiency of the design for a given state, it is necessary to calibrate it to local conditions by taking into consideration locally available materials, traffic information and the environmental conditions. The objective of this study was to calibrate the MEPDG flexible pavement performance models to local conditions of Northeastern region of United States. To achieve this, seventeen pavement sections were selected for the calibration process and the relevant data (structural, traffic, climatic and pavement performance) was obtained from the LTPP database. MEPDG software (Version 1.1) simulation runs were made using the nationally calibrated coefficients and the MEPDG predicted distresses were compared with the LTPP measured distresses (rutting, alligator and longitudinal cracking, thermal cracking and IRI). The predicted distresses showed fair agreement with the measured distresses but still significant differences were found. The difference between the measured and the predicted distresses were minimized through recalibration of the MEPDG distress models. For the permanent deformation models of each layer, a simple linear regression with no intercept was performed and a new set of model coefficients (ßr1, ßGB, and ßSG) for asphalt concrete, granular base and subgrade layer models were calculated. The calibration of alligator (bottom-up fatigue cracking) and longitudinal (topdown fatigue cracking) was done by deriving the appropriate model coefficients (C1, C2, and C4) since the fatigue damage is given in MEDPG software output. Thermal cracking model was not calibrated since the measured transverse cracking data in the LTPP database did not increase with time, as expected to increase with time. The calibration of IRI model was done by computing the model coefficients (C1, C2, C3, and C4) based on other distresses (rutting, total fatigue cracking, and transverse cracking) by performing a simple linear regression.



Mechanistic Empirical Pavement Design Guide Flexible Pavement Performance Prediction Models For Montana Reference Manual


Mechanistic Empirical Pavement Design Guide Flexible Pavement Performance Prediction Models For Montana Reference Manual
DOWNLOAD
Author : Harold L. Von Quintus
language : en
Publisher:
Release Date : 2007

Mechanistic Empirical Pavement Design Guide Flexible Pavement Performance Prediction Models For Montana Reference Manual written by Harold L. Von Quintus and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Pavements categories.