Exponential Stability Of Stochastic Differential Equations

DOWNLOAD
Download Exponential Stability Of Stochastic Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exponential Stability Of Stochastic Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Stochastic Stability Of Differential Equations
DOWNLOAD
Author : Rafail Khasminskii
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-09-20
Stochastic Stability Of Differential Equations written by Rafail Khasminskii and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Mathematics categories.
Since the publication of the first edition of the present volume in 1980, the stochastic stability of differential equations has become a very popular subject of research in mathematics and engineering. To date exact formulas for the Lyapunov exponent, the criteria for the moment and almost sure stability, and for the existence of stationary and periodic solutions of stochastic differential equations have been widely used in the literature. In this updated volume readers will find important new results on the moment Lyapunov exponent, stability index and some other fields, obtained after publication of the first edition, and a significantly expanded bibliography. This volume provides a solid foundation for students in graduate courses in mathematics and its applications. It is also useful for those researchers who would like to learn more about this subject, to start their research in this area or to study the properties of concrete mechanical systems subjected to random perturbations.
Stochastic Differential Equations With Markovian Switching
DOWNLOAD
Author : Xuerong Mao
language : en
Publisher: Imperial College Press
Release Date : 2006
Stochastic Differential Equations With Markovian Switching written by Xuerong Mao and has been published by Imperial College Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
This textbook provides the first systematic presentation of the theory of stochastic differential equations with Markovian switching. It presents the basic principles at an introductory level but emphasizes current advanced level research trends. The material takes into account all the features of Ito equations, Markovian switching, interval systems and time-lag. The theory developed is applicable in different and complicated situations in many branches of science and industry.
Stochastic Integration And Differential Equations
DOWNLOAD
Author : Philip E. Protter
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-03-04
Stochastic Integration And Differential Equations written by Philip E. Protter and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-03-04 with Mathematics categories.
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.
Applied Stochastic Differential Equations
DOWNLOAD
Author : Simo Särkkä
language : en
Publisher: Cambridge University Press
Release Date : 2019-05-02
Applied Stochastic Differential Equations written by Simo Särkkä and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-02 with Business & Economics categories.
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Stability Of Stochastic Differential Equations With Respect To Semimartingales
DOWNLOAD
Author : Xuerong Mao
language : en
Publisher:
Release Date : 1991
Stability Of Stochastic Differential Equations With Respect To Semimartingales written by Xuerong Mao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Mathematics categories.
Numerical Solution Of Stochastic Differential Equations
DOWNLOAD
Author : Peter E. Kloeden
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Numerical Solution Of Stochastic Differential Equations written by Peter E. Kloeden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
The aim of this book is to provide an accessible introduction to stochastic differ ential equations and their applications together with a systematic presentation of methods available for their numerical solution. During the past decade there has been an accelerating interest in the de velopment of numerical methods for stochastic differential equations (SDEs). This activity has been as strong in the engineering and physical sciences as it has in mathematics, resulting inevitably in some duplication of effort due to an unfamiliarity with the developments in other disciplines. Much of the reported work has been motivated by the need to solve particular types of problems, for which, even more so than in the deterministic context, specific methods are required. The treatment has often been heuristic and ad hoc in character. Nevertheless, there are underlying principles present in many of the papers, an understanding of which will enable one to develop or apply appropriate numerical schemes for particular problems or classes of problems.
Stochastic Processes And Applications
DOWNLOAD
Author : Grigorios A. Pavliotis
language : en
Publisher: Springer
Release Date : 2014-11-19
Stochastic Processes And Applications written by Grigorios A. Pavliotis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-19 with Mathematics categories.
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Random Differential Equations In Science And Engineering
DOWNLOAD
Author : Soong
language : en
Publisher: Academic Press
Release Date : 1973-09-21
Random Differential Equations In Science And Engineering written by Soong and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1973-09-21 with Computers categories.
Random Differential Equations in Science and Engineering
Theory Of Impulsive Differential Equations
DOWNLOAD
Author : Vangipuram Lakshmikantham
language : en
Publisher: World Scientific
Release Date : 1989-05-01
Theory Of Impulsive Differential Equations written by Vangipuram Lakshmikantham and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-05-01 with Mathematics categories.
Many evolution processes are characterized by the fact that at certain moments of time they experience a change of state abruptly. These processes are subject to short-term perturbations whose duration is negligible in comparison with the duration of the process. Consequently, it is natural to assume that these perturbations act instantaneously, that is, in the form of impulses. It is known, for example, that many biological phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control models in economics, pharmacokinetics and frequency modulated systems, do exhibit impulsive effects. Thus impulsive differential equations, that is, differential equations involving impulse effects, appear as a natural description of observed evolution phenomena of several real world problems.
Dynamical Systems And Applications
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: World Scientific
Release Date : 1995
Dynamical Systems And Applications written by Ravi P. Agarwal and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Mathematics categories.
World Scientific series in Applicable Analysis (WSSIAA) aims at reporting new developments of high mathematical standard and current interest. Each volume in the series shall be devoted to the mathematical analysis that has been applied or potentially applicable to the solutions of scientific, engineering, and social problems. For the past twenty five years, there has been an explosion of interest in the study of nonlinear dynamical systems. Mathematical techniques developed during this period have been applied to important nonlinear problems ranging from physics and chemistry to ecology and economics. All these developments have made dynamical systems theory an important and attractive branch of mathematics to scientists in many disciplines. This rich mathematical subject has been partially represented in this collection of 45 papers by some of the leading researchers in the area. This volume contains 45 state-of-art articles on the mathematical theory of dynamical systems by leading researchers. It is hoped that this collection will lead new direction in this field.Contributors: B Abraham-Shrauner, V Afraimovich, N U Ahmed, B Aulbach, E J Avila-Vales, F Battelli, J M Blazquez, L Block, T A Burton, R S Cantrell, C Y Chan, P Collet, R Cushman, M Denker, F N Diacu, Y H Ding, N S A El-Sharif, J E Fornaess, M Frankel, R Galeeva, A Galves, V Gershkovich, M Girardi, L Gotusso, J Graczyk, Y Hino, I Hoveijn, V Hutson, P B Kahn, J Kato, J Keesling, S Keras, V Kolmanovskii, N V Minh, V Mioc, K Mischaikow, M Misiurewicz, J W Mooney, M E Muldoon, S Murakami, M Muraskin, A D Myshkis, F Neuman, J C Newby, Y Nishiura, Z Nitecki, M Ohta, G Osipenko, N Ozalp, M Pollicott, Min Qu, Donal O-Regan, E Romanenko, V Roytburd, L Shaikhet, J Shidawara, N Sibony, W-H Steeb, C Stoica, G Swiatek, T Takaishi, N D Thai Son, R Triggiani, A E Tuma, E H Twizell, M Urbanski; T D Van, A Vanderbauwhede, A Veneziani, G Vickers, X Xiang, T Young, Y Zarmi.