Geometry And Combinatorics

DOWNLOAD
Download Geometry And Combinatorics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometry And Combinatorics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Combinatorics And Finite Geometry
DOWNLOAD
Author : Steven T. Dougherty
language : en
Publisher: Springer Nature
Release Date : 2020-10-30
Combinatorics And Finite Geometry written by Steven T. Dougherty and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-30 with Mathematics categories.
This undergraduate textbook is suitable for introductory classes in combinatorics and related topics. The book covers a wide range of both pure and applied combinatorics, beginning with the very basics of enumeration and then going on to Latin squares, graphs and designs. The latter topic is closely related to finite geometry, which is developed in parallel. Applications to probability theory, algebra, coding theory, cryptology and combinatorial game theory comprise the later chapters. Throughout the book, examples and exercises illustrate the material, and the interrelations between the various topics is emphasized. Readers looking to take first steps toward the study of combinatorics, finite geometry, design theory, coding theory, or cryptology will find this book valuable. Essentially self-contained, there are very few prerequisites aside from some mathematical maturity, and the little algebra required is covered in the text. The book is also a valuable resource for anyone interested in discrete mathematics as it ties together a wide variety of topics.
Geometric Combinatorics
DOWNLOAD
Author : Ezra Miller
language : en
Publisher: American Mathematical Soc.
Release Date : 2007
Geometric Combinatorics written by Ezra Miller and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Combinatorial analysis categories.
Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.
Lectures In Geometric Combinatorics
DOWNLOAD
Author : Rekha R. Thomas
language : en
Publisher: American Mathematical Soc.
Release Date : 2006
Lectures In Geometric Combinatorics written by Rekha R. Thomas and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics.The connections rely on Grobner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.
Geometric Graphs And Arrangements
DOWNLOAD
Author : Stefan Felsner
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometric Graphs And Arrangements written by Stefan Felsner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Among the intuitively appealing aspects of graph theory is its close connection to drawings and geometry. The development of computer technology has become a source of motivation to reconsider these connections, in particular geometric graphs are emerging as a new subfield of graph theory. Arrangements of points and lines are the objects for many challenging problems and surprising solutions in combinatorial geometry. The book is a collection of beautiful and mostly very recent results from the intersection of geometry, graph theory and combinatorics.
Combinatorial Convexity And Algebraic Geometry
DOWNLOAD
Author : Günter Ewald
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Combinatorial Convexity And Algebraic Geometry written by Günter Ewald and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The aim of this book is to provide an introduction for students and nonspecialists to a fascinating relation between combinatorial geometry and algebraic geometry, as it has developed during the last two decades. This relation is known as the theory of toric varieties or sometimes as torus embeddings. Chapters I-IV provide a self-contained introduction to the theory of convex poly topes and polyhedral sets and can be used independently of any applications to algebraic geometry. Chapter V forms a link between the first and second part of the book. Though its material belongs to combinatorial convexity, its definitions and theorems are motivated by toric varieties. Often they simply translate algebraic geometric facts into combinatorial language. Chapters VI-VIII introduce toric va rieties in an elementary way, but one which may not, for specialists, be the most elegant. In considering toric varieties, many of the general notions of algebraic geometry occur and they can be dealt with in a concrete way. Therefore, Part 2 of the book may also serve as an introduction to algebraic geometry and preparation for farther reaching texts about this field. The prerequisites for both parts of the book are standard facts in linear algebra (including some facts on rings and fields) and calculus. Assuming those, all proofs in Chapters I-VII are complete with one exception (IV, Theorem 5.1). In Chapter VIII we use a few additional prerequisites with references from appropriate texts.
Algorithms In Combinatorial Geometry
DOWNLOAD
Author : Herbert Edelsbrunner
language : en
Publisher: Springer Science & Business Media
Release Date : 1987-07-31
Algorithms In Combinatorial Geometry written by Herbert Edelsbrunner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987-07-31 with Computers categories.
Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.
Geometric Algorithms And Combinatorial Optimization
DOWNLOAD
Author : Martin Grötschel
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometric Algorithms And Combinatorial Optimization written by Martin Grötschel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.
Finite Geometry And Combinatorial Applications
DOWNLOAD
Author : Simeon Ball
language : en
Publisher: Cambridge University Press
Release Date : 2015-07-02
Finite Geometry And Combinatorial Applications written by Simeon Ball and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-02 with Mathematics categories.
A graduate-level introduction to finite geometry and its applications to other areas of combinatorics.
Flag Varieties
DOWNLOAD
Author : Justin Brown V Lakshmibai
language : en
Publisher:
Release Date : 2018
Flag Varieties written by Justin Brown V Lakshmibai and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
Finite Geometry And Combinatorics
DOWNLOAD
Author : Albrecht Beutelspacher
language : en
Publisher:
Release Date : 1998
Finite Geometry And Combinatorics written by Albrecht Beutelspacher and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with categories.