[PDF] Integrable Systems From Classical To Quantum - eBooks Review

Integrable Systems From Classical To Quantum


Integrable Systems From Classical To Quantum
DOWNLOAD

Download Integrable Systems From Classical To Quantum PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Integrable Systems From Classical To Quantum book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Elements Of Classical And Quantum Integrable Systems


Elements Of Classical And Quantum Integrable Systems
DOWNLOAD
Author : Gleb Arutyunov
language : en
Publisher: Springer
Release Date : 2020-08-15

Elements Of Classical And Quantum Integrable Systems written by Gleb Arutyunov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-15 with Science categories.


Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.



Quantum Integrable Systems


Quantum Integrable Systems
DOWNLOAD
Author : Asesh Roy Chowdhury
language : en
Publisher: CRC Press
Release Date : 2004-01-28

Quantum Integrable Systems written by Asesh Roy Chowdhury and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-01-28 with Science categories.


The study of integrable systems has opened new horizons in classical physics over the past few decades, particularly in the subatomic world. Yet despite the field now having reached a level of maturity, very few books provide an introduction to the field accessible to specialists and nonspecialists alike, and none offer a systematic survey of the m



Chaos In Classical And Quantum Mechanics


Chaos In Classical And Quantum Mechanics
DOWNLOAD
Author : Martin C. Gutzwiller
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-27

Chaos In Classical And Quantum Mechanics written by Martin C. Gutzwiller and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-27 with Mathematics categories.


Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.



Introduction To Classical Integrable Systems


Introduction To Classical Integrable Systems
DOWNLOAD
Author : Olivier Babelon
language : en
Publisher: Cambridge University Press
Release Date : 2003-04-17

Introduction To Classical Integrable Systems written by Olivier Babelon and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-04-17 with Mathematics categories.


This book provides a thorough introduction to the theory of classical integrable systems, discussing the various approaches to the subject and explaining their interrelations. The book begins by introducing the central ideas of the theory of integrable systems, based on Lax representations, loop groups and Riemann surfaces. These ideas are then illustrated with detailed studies of model systems. The connection between isomonodromic deformation and integrability is discussed, and integrable field theories are covered in detail. The KP, KdV and Toda hierarchies are explained using the notion of Grassmannian, vertex operators and pseudo-differential operators. A chapter is devoted to the inverse scattering method and three complementary chapters cover the necessary mathematical tools from symplectic geometry, Riemann surfaces and Lie algebras. The book contains many worked examples and is suitable for use as a textbook on graduate courses. It also provides a comprehensive reference for researchers already working in the field.



New Trends In Quantum Integrable Systems


New Trends In Quantum Integrable Systems
DOWNLOAD
Author : Boris Feigin
language : en
Publisher: World Scientific
Release Date : 2010-10-29

New Trends In Quantum Integrable Systems written by Boris Feigin and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-29 with Mathematics categories.


The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project "Method of Algebraic Analysis in Integrable Systems" in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years. Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics. Through these topics, the reader is exposed to the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.



Classical And Quantum Physics


Classical And Quantum Physics
DOWNLOAD
Author : G. Marmo
language : en
Publisher: Springer Nature
Release Date : 2019-10-26

Classical And Quantum Physics written by G. Marmo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-26 with Science categories.


This proceedings is based on the interdisciplinary workshop held in Madrid, 5-9 March 2018, dedicated to Alberto Ibort on his 60th birthday. Alberto has great and significantly contributed to many fields of mathematics and physics, always with highly original and innovative ideas.Most of Albertos’s scientific activity has been motivated by geometric ideas, concepts and tools that are deeply related to the framework of classical dynamics and quantum mechanics.Let us mention some of the fields of expertise of Alberto Ibort:Geometric Mechanics; Constrained Systems; Variational Principles; Multisymplectic structures for field theories; Super manifolds; Inverse problem for Bosonic and Fermionic systems; Quantum Groups, Integrable systems, BRST Symmetries; Implicit differential equations; Yang-Mills Theories; BiHamiltonian Systems; Topology Change and Quantum Boundary Conditions; Classical and Quantum Control; Orthogonal Polynomials; Quantum Field Theory and Noncommutative Spaces; Classical and Quantum Tomography; Quantum Mechanics on phase space; Wigner-Weyl formalism; Lie-Jordan Algebras, Classical and Quantum; Quantum-to-Classical transition; Contraction of Associative Algebras; contact geometry, among many others.In each contribution, one may find not only technical novelties but also completely new way of looking at the considered problems. Even an experienced reader, reading Alberto's contributions on his field of expertise, will find new perspectives on the considered topic.His enthusiasm is happily contagious, for this reason he has had, and still has, very bright students wishing to elaborate their PhD thesis under his guidance.What is more impressive, is the broad list of rather different topics on which he has contributed.



Algebraic Integrability Of Nonlinear Dynamical Systems On Manifolds


Algebraic Integrability Of Nonlinear Dynamical Systems On Manifolds
DOWNLOAD
Author : A.K. Prykarpatsky
language : en
Publisher: Springer
Release Date : 1998-06-30

Algebraic Integrability Of Nonlinear Dynamical Systems On Manifolds written by A.K. Prykarpatsky and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-06-30 with Mathematics categories.


Noting that their research is not yet completed, Prykarpatsky (mathematics, U. of Mining and Metallurgy, Cracow, Poland and mechanics and mathematics, NAS, Lviv, Ukraine) and Mykytiuk (mechanics and mathematics, NAS and Lviv Polytechnic State U., Ukraine) describe some of the ideas of Lie algebra that underlie many of the comprehensive integrability theories of nonlinear dynamical systems on manifolds. For each case they analyze, they separate the basic algebraic essence responsible for the complete integrability and explore how it is also in some sense characteristic for all of them. They cover systems with homogeneous configuration spaces, geometric quantization, structures on manifolds, algebraic methods of quantum statistical mechanics and their applications, and algebraic and differential geometric aspects related to infinite-dimensional functional manifolds. They have not indexed their work.



Geometric Formulation Of Classical And Quantum Mechanics


Geometric Formulation Of Classical And Quantum Mechanics
DOWNLOAD
Author : G. Giachetta
language : en
Publisher: World Scientific
Release Date : 2011

Geometric Formulation Of Classical And Quantum Mechanics written by G. Giachetta and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Science categories.


The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.



An Introduction To Integrable Techniques For One Dimensional Quantum Systems


An Introduction To Integrable Techniques For One Dimensional Quantum Systems
DOWNLOAD
Author : Fabio Franchini
language : en
Publisher: Springer
Release Date : 2017-05-25

An Introduction To Integrable Techniques For One Dimensional Quantum Systems written by Fabio Franchini and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-25 with Science categories.


This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.



The Transition To Chaos


The Transition To Chaos
DOWNLOAD
Author : Linda Reichl
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

The Transition To Chaos written by Linda Reichl and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Science categories.


resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].