[PDF] Introduction To Data Science With Python - eBooks Review

Introduction To Data Science With Python


Introduction To Data Science With Python
DOWNLOAD

Download Introduction To Data Science With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Data Science With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Data Science With Python


An Introduction To Data Science With Python
DOWNLOAD
Author : Jeffrey S. Saltz
language : en
Publisher: SAGE Publications
Release Date : 2024-05-29

An Introduction To Data Science With Python written by Jeffrey S. Saltz and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-29 with Computers categories.


An Introduction to Data Science with Python by Jeffrey S. Saltz and Jeffery M. Stanton provides readers who are new to Python and data science with a step-by-step walkthrough of the tools and techniques used to analyze data and generate predictive models. After introducing the basic concepts of data science, the book builds on these foundations to explain data science techniques using Python-based Jupyter Notebooks. The techniques include making tables and data frames, computing statistics, managing data, creating data visualizations, and building machine learning models. Each chapter breaks down the process into simple steps and components so students with no more than a high school algebra background will still find the concepts and code intelligible. Explanations are reinforced with linked practice questions throughout to check reader understanding. The book also covers advanced topics such as neural networks and deep learning, the basis of many recent and startling advances in machine learning and artificial intelligence. With their trademark humor and clear explanations, Saltz and Stanton provide a gentle introduction to this powerful data science tool. Included with this title: LMS Cartridge: Import this title’s instructor resources into your school’s learning management system (LMS) and save time. Don′t use an LMS? You can still access all of the same online resources for this title via the password-protected Instructor Resource Site.



Data Science For Beginners


Data Science For Beginners
DOWNLOAD
Author : Prof John Smith
language : en
Publisher: Independently Published
Release Date : 2018-12-12

Data Science For Beginners written by Prof John Smith and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with categories.


DATA SCIENCE FOR BEGINNERS Introduction to Data Science: Python,Coding, Application, Statistics,Decision Tree, Neural Network, and Linear Algebra WHAT THIS BOOK WILL DO FOR YOU We will talk about what is the need for data science and then what exactly is data science some definitions and understand. The differences between data science and business intelligence,Then we will talk about the prerequisites for learning data science, and then what does the data scientist do. What are the activities performed by a data scientist as a part of his daily life and then we will talk about the data science lifecycle witha quick example and briefly touch upon the demand or ever-increasing demand for data scientist. Benefits of Data science Data Science: Automobile Data science: Aviation Data science can also be used to make promotional offers. Chapters Data science: Its Advantage Data science: Its Definition Process in data science Difference between business intelligence and data science Prerequisites for data science Machine learning. Data science: Tools and skills in data science. Data Science: Machine-learning algorithms Data science: Life cycle of a data science Data science: Exploratory data analysis Data science: Techniques for exploratory data analysis



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Laura Igual
language : en
Publisher: Springer
Release Date : 2017-02-22

Introduction To Data Science written by Laura Igual and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-22 with Computers categories.


This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.



Introduction To Data Science And Machine Learning


Introduction To Data Science And Machine Learning
DOWNLOAD
Author : Keshav Sud
language : en
Publisher: BoD – Books on Demand
Release Date : 2020-03-25

Introduction To Data Science And Machine Learning written by Keshav Sud and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-25 with Computers categories.


Introduction to Data Science and Machine Learning has been created with the goal to provide beginners seeking to learn about data science, data enthusiasts, and experienced data professionals with a deep understanding of data science application development using open-source programming from start to finish. This book is divided into four sections: the first section contains an introduction to the book, the second covers the field of data science, software development, and open-source based embedded hardware; the third section covers algorithms that are the decision engines for data science applications; and the final section brings together the concepts shared in the first three sections and provides several examples of data science applications.



A Hands On Introduction To Data Science


A Hands On Introduction To Data Science
DOWNLOAD
Author : Chirag Shah
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-02

A Hands On Introduction To Data Science written by Chirag Shah and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-02 with Business & Economics categories.


An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Laura Igual
language : en
Publisher: Springer Nature
Release Date : 2024-04-12

Introduction To Data Science written by Laura Igual and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-12 with Computers categories.


This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.



Introduction To Data Science For Social And Policy Research


Introduction To Data Science For Social And Policy Research
DOWNLOAD
Author : Jose Manuel Magallanes Reyes
language : en
Publisher: Cambridge University Press
Release Date : 2017-09-21

Introduction To Data Science For Social And Policy Research written by Jose Manuel Magallanes Reyes and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-21 with Computers categories.


This comprehensive guide provides a step-by-step approach to data collection, cleaning, formatting, and storage, using Python and R.



Introduction To Data Systems


Introduction To Data Systems
DOWNLOAD
Author : Thomas Bressoud
language : en
Publisher: Springer Nature
Release Date : 2020-12-04

Introduction To Data Systems written by Thomas Bressoud and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-04 with Computers categories.


Encompassing a broad range of forms and sources of data, this textbook introduces data systems through a progressive presentation. Introduction to Data Systems covers data acquisition starting with local files, then progresses to data acquired from relational databases, from REST APIs and through web scraping. It teaches data forms/formats from tidy data to relationally defined sets of tables to hierarchical structure like XML and JSON using data models to convey the structure, operations, and constraints of each data form. The starting point of the book is a foundation in Python programming found in introductory computer science classes or short courses on the language, and so does not require prerequisites of data structures, algorithms, or other courses. This makes the material accessible to students early in their educational career and equips them with understanding and skills that can be applied in computer science, data science/data analytics, and information technology programs as well as for internships and research experiences. This book is accessible to a wide variety of students. By drawing together content normally spread across upper level computer science courses, it offers a single source providing the essentials for data science practitioners. In our increasingly data-centric world, students from all domains will benefit from the “data-aptitude” built by the material in this book.



Introducing Data Science


Introducing Data Science
DOWNLOAD
Author : Davy Cielen
language : en
Publisher: Simon and Schuster
Release Date : 2016-05-02

Introducing Data Science written by Davy Cielen and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-02 with Computers categories.


Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Laura Igual
language : en
Publisher: Springer
Release Date : 2024-04-25

Introduction To Data Science written by Laura Igual and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-25 with Computers categories.


This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.