Introduction To Stochastic Partial Differential Equations

DOWNLOAD
Download Introduction To Stochastic Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Stochastic Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Stochastic Partial Differential Equations An Introduction
DOWNLOAD
Author : Wei Liu
language : en
Publisher: Springer
Release Date : 2015-10-06
Stochastic Partial Differential Equations An Introduction written by Wei Liu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-06 with Mathematics categories.
This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and the ‘locally monotone case’ is presented in a detailed and complete way for SPDEs. The extension to this more general framework for SPDEs, for example, in comparison to the well-known case of globally monotone coefficients, substantially widens the applicability of the results.
Stochastic Partial Differential Equations
DOWNLOAD
Author : Helge Holden
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-08
Stochastic Partial Differential Equations written by Helge Holden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-08 with Mathematics categories.
This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th,~se SPDEs explicitly, or at least provide algorithms or approximations for the solutions.
An Introduction To Stochastic Differential Equations
DOWNLOAD
Author : Lawrence C. Evans
language : en
Publisher: American Mathematical Soc.
Release Date : 2012-12-11
An Introduction To Stochastic Differential Equations written by Lawrence C. Evans and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-11 with Mathematics categories.
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
A Minicourse On Stochastic Partial Differential Equations
DOWNLOAD
Author : Robert C. Dalang
language : en
Publisher: Springer Science & Business Media
Release Date : 2009
A Minicourse On Stochastic Partial Differential Equations written by Robert C. Dalang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.
This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.
A Concise Course On Stochastic Partial Differential Equations
DOWNLOAD
Author : Claudia Prévôt
language : en
Publisher: Springer
Release Date : 2007-05-26
A Concise Course On Stochastic Partial Differential Equations written by Claudia Prévôt and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-26 with Mathematics categories.
These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. There are three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material is included in appendices.
An Introduction To Computational Stochastic Pdes
DOWNLOAD
Author : Gabriel J. Lord
language : en
Publisher: Cambridge University Press
Release Date : 2014-08-11
An Introduction To Computational Stochastic Pdes written by Gabriel J. Lord and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-11 with Business & Economics categories.
This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.
Numerical Methods For Stochastic Partial Differential Equations With White Noise
DOWNLOAD
Author : Zhongqiang Zhang
language : en
Publisher: Springer
Release Date : 2017-09-12
Numerical Methods For Stochastic Partial Differential Equations With White Noise written by Zhongqiang Zhang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-12 with Mathematics categories.
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Stochastic Differential Equations
DOWNLOAD
Author : Bernt Oksendal
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Stochastic Differential Equations written by Bernt Oksendal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.
Backward Stochastic Differential Equations
DOWNLOAD
Author : Jianfeng Zhang
language : en
Publisher: Springer
Release Date : 2017-08-22
Backward Stochastic Differential Equations written by Jianfeng Zhang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-22 with Mathematics categories.
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
Applied Stochastic Differential Equations
DOWNLOAD
Author : Simo Särkkä
language : en
Publisher: Cambridge University Press
Release Date : 2019-05-02
Applied Stochastic Differential Equations written by Simo Särkkä and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-02 with Business & Economics categories.
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.