[PDF] K Theory - eBooks Review

K Theory


K Theory
DOWNLOAD

Download K Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get K Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



K Theory


K Theory
DOWNLOAD
Author : Michael Atiyah
language : en
Publisher: CRC Press
Release Date : 2018-03-05

K Theory written by Michael Atiyah and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-05 with Mathematics categories.


These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.



The Local Structure Of Algebraic K Theory


The Local Structure Of Algebraic K Theory
DOWNLOAD
Author : Bjørn Ian Dundas
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-06

The Local Structure Of Algebraic K Theory written by Bjørn Ian Dundas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-06 with Mathematics categories.


Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.



Algebraic K Theory


Algebraic K Theory
DOWNLOAD
Author : Hvedri Inassaridze
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Algebraic K Theory written by Hvedri Inassaridze and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results. This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras. This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.



Algebraic K Theory And Its Applications


Algebraic K Theory And Its Applications
DOWNLOAD
Author : Jonathan Rosenberg
language : en
Publisher: Springer Science & Business Media
Release Date : 1995-12-22

Algebraic K Theory And Its Applications written by Jonathan Rosenberg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-12-22 with Mathematics categories.


Algebraic K-Theory is crucial in many areas of modern mathematics, especially algebraic topology, number theory, algebraic geometry, and operator theory. This text is designed to help graduate students in other areas learn the basics of K-Theory and get a feel for its many applications. Topics include algebraic topology, homological algebra, algebraic number theory, and an introduction to cyclic homology and its interrelationship with K-Theory.



K Theory


K Theory
DOWNLOAD
Author : Michael Atiyah
language : en
Publisher: CRC Press
Release Date : 2018-03-05

K Theory written by Michael Atiyah and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-05 with Mathematics categories.


These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.



Algebraic K Theory


Algebraic K Theory
DOWNLOAD
Author : Vasudevan Srinivas
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-05-21

Algebraic K Theory written by Vasudevan Srinivas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-05-21 with Mathematics categories.


Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. This new edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers “Higher Algebraic K-Theory, I, II.” A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An applications is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties.



Handbook Of K Theory


Handbook Of K Theory
DOWNLOAD
Author : Eric Friedlander
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-07-18

Handbook Of K Theory written by Eric Friedlander and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-07-18 with Mathematics categories.


This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.



The Classical Groups And K Theory


The Classical Groups And K Theory
DOWNLOAD
Author : Alexander J. Hahn
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

The Classical Groups And K Theory written by Alexander J. Hahn and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


It is a great satisfaction for a mathematician to witness the growth and expansion of a theory in which he has taken some part during its early years. When H. Weyl coined the words "classical groups", foremost in his mind were their connections with invariant theory, which his famous book helped to revive. Although his approach in that book was deliberately algebraic, his interest in these groups directly derived from his pioneering study of the special case in which the scalars are real or complex numbers, where for the first time he injected Topology into Lie theory. But ever since the definition of Lie groups, the analogy between simple classical groups over finite fields and simple classical groups over IR or C had been observed, even if the concept of "simplicity" was not quite the same in both cases. With the discovery of the exceptional simple complex Lie algebras by Killing and E. Cartan, it was natural to look for corresponding groups over finite fields, and already around 1900 this was done by Dickson for the exceptional Lie algebras G and E • However, a deep reason for this 2 6 parallelism was missing, and it is only Chevalley who, in 1955 and 1961, discovered that to each complex simple Lie algebra corresponds, by a uniform process, a group scheme (fj over the ring Z of integers, from which, for any field K, could be derived a group (fj(K).



Representation Theory And Higher Algebraic K Theory


Representation Theory And Higher Algebraic K Theory
DOWNLOAD
Author : Aderemi Kuku
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Representation Theory And Higher Algebraic K Theory written by Aderemi Kuku and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.


Representation Theory and Higher Algebraic K-Theory is the first book to present higher algebraic K-theory of orders and group rings as well as characterize higher algebraic K-theory as Mackey functors that lead to equivariant higher algebraic K-theory and their relative generalizations. Thus, this book makes computations of higher K-theory of grou



Mixed Motives And Algebraic K Theory


Mixed Motives And Algebraic K Theory
DOWNLOAD
Author : Uwe Jannsen
language : en
Publisher: Springer
Release Date : 2006-11-14

Mixed Motives And Algebraic K Theory written by Uwe Jannsen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.


The relations that could or should exist between algebraic cycles, algebraic K-theory, and the cohomology of - possibly singular - varieties, are the topic of investigation of this book. The author proceeds in an axiomatic way, combining the concepts of twisted Poincaré duality theories, weights, and tensor categories. One thus arrives at generalizations to arbitrary varieties of the Hodge and Tate conjectures to explicit conjectures on l-adic Chern characters for global fields and to certain counterexamples for more general fields. It is to be hoped that these relations ions will in due course be explained by a suitable tensor category of mixed motives. An approximation to this is constructed in the setting of absolute Hodge cycles, by extending this theory to arbitrary varieties. The book can serve both as a guide for the researcher, and as an introduction to these ideas for the non-expert, provided (s)he knows or is willing to learn about K-theory and the standard cohomology theories of algebraic varieties.