Learning Control

DOWNLOAD
Download Learning Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Iterative Learning Control
DOWNLOAD
Author : Zeungnam Bien
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Iterative Learning Control written by Zeungnam Bien and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
Iterative Learning Control (ILC) differs from most existing control methods in the sense that, it exploits every possibility to incorporate past control informa tion, such as tracking errors and control input signals, into the construction of the present control action. There are two phases in Iterative Learning Control: first the long term memory components are used to store past control infor mation, then the stored control information is fused in a certain manner so as to ensure that the system meets control specifications such as convergence, robustness, etc. It is worth pointing out that, those control specifications may not be easily satisfied by other control methods as they require more prior knowledge of the process in the stage of the controller design. ILC requires much less information of the system variations to yield the desired dynamic be haviors. Due to its simplicity and effectiveness, ILC has received considerable attention and applications in many areas for the past one and half decades. Most contributions have been focused on developing new ILC algorithms with property analysis. Since 1992, the research in ILC has progressed by leaps and bounds. On one hand, substantial work has been conducted and reported in the core area of developing and analyzing new ILC algorithms. On the other hand, researchers have realized that integration of ILC with other control techniques may give rise to better controllers that exhibit desired performance which is impossible by any individual approach.
Machine Learning Control Taming Nonlinear Dynamics And Turbulence
DOWNLOAD
Author : Thomas Duriez
language : en
Publisher: Springer
Release Date : 2016-11-02
Machine Learning Control Taming Nonlinear Dynamics And Turbulence written by Thomas Duriez and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-02 with Technology & Engineering categories.
This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
Learning For Adaptive And Reactive Robot Control
DOWNLOAD
Author : Aude Billard
language : en
Publisher: MIT Press
Release Date : 2022-02-08
Learning For Adaptive And Reactive Robot Control written by Aude Billard and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-08 with Technology & Engineering categories.
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.
Real Time Iterative Learning Control
DOWNLOAD
Author : Jian-Xin Xu
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-12
Real Time Iterative Learning Control written by Jian-Xin Xu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-12 with Technology & Engineering categories.
Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.
Iterative Learning Control For Multi Agent Systems Coordination
DOWNLOAD
Author : Shiping Yang
language : en
Publisher: John Wiley & Sons
Release Date : 2017-06-12
Iterative Learning Control For Multi Agent Systems Coordination written by Shiping Yang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-12 with Technology & Engineering categories.
A timely guide using iterative learning control (ILC) as a solution for multi-agent systems (MAS) challenges, showcasing recent advances and industrially relevant applications Explores the synergy between the important topics of iterative learning control (ILC) and multi-agent systems (MAS) Concisely summarizes recent advances and significant applications in ILC methods for power grids, sensor networks and control processes Covers basic theory, rigorous mathematics as well as engineering practice
Motor Learning And Control For Practitioners
DOWNLOAD
Author : Cheryl A. Coker
language : en
Publisher: Routledge
Release Date : 2017-09-22
Motor Learning And Control For Practitioners written by Cheryl A. Coker and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-22 with Sports & Recreation categories.
With an array of critical and engaging pedagogical features, the fourth edition of Motor Learning and Control for Practitioners offers the best practical introduction to motor learning available. This reader-friendly text approaches motor learning in accessible and simple terms, and lays a theoretical foundation for assessing performance; providing effective instruction; and designing practice, rehabilitation, and training experiences that promote skill acquisition. Features such as Exploration Activities and Cerebral Challenges involve students at every stage, while a broad range of examples helps readers put theory into practice. The book also provides access to a fully updated companion website, which includes laboratory exercises, an instructors’ manual, a test bank, and lecture slides. As a complete resource for teaching an evidence-based approach to practical motor learning, this is an essential text for practitioners and students who plan to work in physical education, kinesiology, exercise science, coaching, physical therapy, or dance.
Linear And Nonlinear Iterative Learning Control
DOWNLOAD
Author : Jian-Xin Xu
language : en
Publisher: Springer
Release Date : 2003-06-23
Linear And Nonlinear Iterative Learning Control written by Jian-Xin Xu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-23 with Technology & Engineering categories.
This monograph summarizes the recent achievements made in the field of iterative learning control. The book is self-contained in theoretical analysis and can be used as a reference or textbook for a graduate level course as well as for self-study. It opens a new avenue towards a new paradigm in deterministic learning control theory accompanied by detailed examples.
Learning Based Adaptive Control
DOWNLOAD
Author : Mouhacine Benosman
language : en
Publisher: Butterworth-Heinemann
Release Date : 2016-08-02
Learning Based Adaptive Control written by Mouhacine Benosman and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-02 with Technology & Engineering categories.
Adaptive control has been one of the main problems studied in control theory. The subject is well understood, yet it has a very active research frontier. This book focuses on a specific subclass of adaptive control, namely, learning-based adaptive control. As systems evolve during time or are exposed to unstructured environments, it is expected that some of their characteristics may change. This book offers a new perspective about how to deal with these variations. By merging together Model-Free and Model-Based learning algorithms, the author demonstrates, using a number of mechatronic examples, how the learning process can be shortened and optimal control performance can be reached and maintained. - Includes a good number of Mechatronics Examples of the techniques. - Compares and blends Model-free and Model-based learning algorithms. - Covers fundamental concepts, state-of-the-art research, necessary tools for modeling, and control.
Reinforcement Learning And Optimal Control
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2019-07-01
Reinforcement Learning And Optimal Control written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-01 with Computers categories.
This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.
Handbook Of Reinforcement Learning And Control
DOWNLOAD
Author : Kyriakos G. Vamvoudakis
language : en
Publisher: Springer Nature
Release Date : 2021-06-23
Handbook Of Reinforcement Learning And Control written by Kyriakos G. Vamvoudakis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-23 with Technology & Engineering categories.
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.