[PDF] Long Term Effectiveness Of Recycling Agents To Improve Performance Properties Of Asphalt Concrete - eBooks Review

Long Term Effectiveness Of Recycling Agents To Improve Performance Properties Of Asphalt Concrete


Long Term Effectiveness Of Recycling Agents To Improve Performance Properties Of Asphalt Concrete
DOWNLOAD

Download Long Term Effectiveness Of Recycling Agents To Improve Performance Properties Of Asphalt Concrete PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Long Term Effectiveness Of Recycling Agents To Improve Performance Properties Of Asphalt Concrete book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Long Term Effectiveness Of Recycling Agents To Improve Performance Properties Of Asphalt Concrete


Long Term Effectiveness Of Recycling Agents To Improve Performance Properties Of Asphalt Concrete
DOWNLOAD
Author : Mahsa Tofighian
language : en
Publisher:
Release Date : 2023

Long Term Effectiveness Of Recycling Agents To Improve Performance Properties Of Asphalt Concrete written by Mahsa Tofighian and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with categories.


Recycled materials such as reclaimed asphalt pavement (RAP) have been incorporated into asphalt mixtures for many years. However, their usage has increased over time as they are seen as a way to reduce the cost of asphalt mixtures, save energy, and protect the environment. Similarly, there has been a growing focus on the utilization of recycled asphalt shingles (RAS) in asphalt mixtures, a pursuit undertaken by various state highway agencies. However, unless appropriate precautions are taken, as the proportion of RAP and RAS in the asphalt mixture is raised, the mixture becomes more brittle, leading to a higher risk of cracking and raveling in the asphalt pavement. Furthermore, the mixture becomes less workable and more challenging to compact in the field, increasing the potential for premature field failure. One strategy to incorporate more RAP and RAS into asphalt mixtures involves the use of specialized recycling agents (RAs), known as rejuvenating agents. Over time, asphalt mixtures undergo aging during construction and over the extended service life of asphalt pavements, resulting in the oxidation of the mix and the loss of a significant portion of the maltenes in the binder composition. Maltenes contribute to the softening effect of the binder, and these recycling agents, when used appropriately, are expected to compensate for this reduction in maltenes. The ultimate result of this rebalancing of components is the softening of the aged binder and an improvement in its resistance to cracking. This study investigates the long-term impact of bio-based and petroleum-based recycling agents (RA's) on recycled asphalt binders with varying levels of reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles (RAS) content, specifically low (15%) and high (30%) RAP content and 0% and 5% RAS content. The rejuvenated binders underwent short-term and long-term aging through the use of a Rolling Thin Film Oven (RTFO) and Pressure Aging Vessel (PAV), respectively. The performance characteristics of these modified binders at various aging stages were assessed using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The study revealed that all RA's used in this research maintained their effectiveness even after long-term aging, though the degree of effectiveness varied. Additionally, the results indicated that the petroleum-based RA required a higher dosage to achieve the same effect as the bio-based RA's. The findings from this research also demonstrated that when rejuvenators are added to mixtures with a high RAP content or a combination of RAP and RAS, the mixture's performance is enhanced in terms of low-temperature cracking and fatigue cracking. Nevertheless, it is crucial to extend this work to field pilot projects to ensure the effective application of these rejuvenating products.



Engineered Frameworks For Evaluating The Use Of Recycling Agents In Surface Asphalt Mixtures For Virginia


Engineered Frameworks For Evaluating The Use Of Recycling Agents In Surface Asphalt Mixtures For Virginia
DOWNLOAD
Author : Jhony Habbouche
language : en
Publisher:
Release Date : 2023

Engineered Frameworks For Evaluating The Use Of Recycling Agents In Surface Asphalt Mixtures For Virginia written by Jhony Habbouche and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with Pavements, Asphalt concrete--Recycling categories.


In recent years, several state highway agencies have introduced special provisions and specifications to allow the use of higher contents of reclaimed asphalt pavement (RAP) in asphalt surface mixtures. The challenges associated with high RAP mixtures can be addressed through the use of additives such as recycling agents (RAs) and/or softer binders. Currently, there are no specific guidelines or specifications available to evaluate the acceptability of RAs in Virginia. The purpose of this study was to evaluate the short- and long-term effectiveness of RAs in improving the performance of asphalt mixtures, particularly those with high RAP contents. Another objective of the study was to establish a performance-based framework to determine the acceptability of a specific RA product for inclusion in the Virginia Department of Transportation’s Approved Product List. Both objectives were achieved by benchmarking recycled binder blends (Phase I) and mixtures (Phase II). These were then compared in terms of laboratory performance to commonly used virgin asphalt binders and mixtures in Virginia. Moreover, a comprehensive review of the literature and information from state departments of transportation and RA suppliers on the current state of the practice regarding the use of recycled materials and RAs in asphalt mixtures was summarized. Component materials, including three virgin asphalt binders, RAP and aggregate materials from three different sources, and six RAs, were collected and tested. Phase I involved testing virgin and RAP binders; combinations of virgin binder and RAP binder; and combination of virgin binder, RAP binder, and RAs. A total of 26 binder blends were evaluated at various aging conditions through numerous rheology- and chemistry-based tests. In Phase II, 10 asphalt mixtures were designed and evaluated for durability, resistance to rutting, and resistance to cracking at various aging conditions. Cross-scale evaluation of asphalt binder and mixture testing data was established. Finally, preliminary verification was performed using data collected from various field trials constructed in Virginia. Based on the binders and mixtures tested in this study, the effectiveness of RAs in improving the properties of asphalt binder blends is specific to the product being used and to the targeted temperatures or conditions. Moreover, RAs can enhance the performance and increase the use of recycled materials in asphalt mixtures provided that the correct and suitable dosage of RA product is determined through a performance-based testing framework. The study recommends the following: (1) adopting the streamlined frameworks presented in this study to determine the acceptability of a given RA; (2) further validating the presented framework using different component materials; (3) employing balanced mix design tests to assess the performance characteristics of surface mixtures (with A and D designations) with RAs and drafting a roadmap; (4) collecting and further evaluating the field performance of all trials involving high RAP, RAs, and/or softer binders; (5) investigating the availability and activity of binders, especially with RAs, in RAP materials; (6) evaluating and establishing a protocol to assess the consistency of RAP materials; and (7) quantifying the environmental and economic impacts of using surface mixtures with high RAP contents and/or RAs.



Evaluation Of Properties Of Recycled Asphalt Concrete Hot Mix


Evaluation Of Properties Of Recycled Asphalt Concrete Hot Mix
DOWNLOAD
Author : Elton R. Brown
language : en
Publisher:
Release Date : 1983

Evaluation Of Properties Of Recycled Asphalt Concrete Hot Mix written by Elton R. Brown and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983 with Asphalt concrete categories.


Recycling of aged asphalt concrete pavements has been demonstrated to be cost-effective and to reduce the demand for natural resources such as aggregate and asphalt. Because of the advantages derived when using recycled materials, the capability to predict long-term performance is needed so that optimum benefits can be obtained. This study was undertaken to evaluate the laboratory performance to recycled asphalt concrete mixtures and to compare these results to those measured for conventional asphalt concrete mixtures. Results of this study indicated a satisfactory comparison between laboratory performance of recycled mixtures and conventional mixtures. Fatigue analysis indicated that conventional mixtures would provide the greatest fatigue resistance in thick asphalt concrete layers at lower temperatures, while the recycled mixtures would provide the greatest fatigue resistance in thin asphalt layers at higher temperatures. Water susceptability was shown to be related more to aggregate type than to mixture type. The data show that recycled mixtures prepared with the recycling agent produced mixtures with the lowest durability and poorest low temperature performance when compared with the recycled mixtures prepared with AC-5 or compared with the conventional mixtures.



Investigation Of Binder Rheology And Performance Outcomes Of Recycled Hot Mix Asphalt Using Different Rejuvenation Agents


Investigation Of Binder Rheology And Performance Outcomes Of Recycled Hot Mix Asphalt Using Different Rejuvenation Agents
DOWNLOAD
Author : Kerry Jean King
language : en
Publisher:
Release Date : 2015

Investigation Of Binder Rheology And Performance Outcomes Of Recycled Hot Mix Asphalt Using Different Rejuvenation Agents written by Kerry Jean King and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Pavements categories.


The research presented in this thesis investigated the effect of various rejuvenation agents on the performance of hot-mix asphalt (HMA) surfacing mixes containing high levels of recycled asphalt pavement (RAP) material (30%). The research aimed to develop testing methodologies for evaluating the mechanical performance properties of HMA mixes and for the characterisation of extracted binder properties. The methodologies were used determine the effects of various rejuvenators on the mechanical performance properties and binder properties fundamental to the long-term performance of pavement surfaces. A testing methodology was developed to investigate the performance properties of five HMA mixes including four mixes that were rejuvenated using different rejuvenation agents and one control. The mechanical testing methodology provided a comprehensive assessment of mix properties that are fundamental to the long-term performance of recycled pavements. A methodology for the characterisation of extracted binders was developed to evaluate properties that had a significant effect on the performance of the binder and therefore the overall mix. The binder properties were compared to results obtained from mechanical performance tests to establish a relationship between binder rejuvenation and performance observations. The results obtained from mechanical testing demonstrated that the cracking resistance of recycled mixes could be significantly improved through the use of rejuvenation agents. Rejuvenation also decreased the stiffness of the mix and had a negative effect on the resistance of a mix to permanent deformation. From the characterisation of the binder, it was found that rejuvenation agents altered the rheological properties of the binder but did not have a notable effect on chemical composition. The rheological performance parameters of the binder correlated to the mix performance observed from mechanical tests. Overall this research has shown that rejuvenation agents can be utilised to enhance the performance of recycled mixes by restoring binder properties.



Recycled Materials In Geotechnical And Pavement Applications


Recycled Materials In Geotechnical And Pavement Applications
DOWNLOAD
Author : Amin Chegenizadeh
language : en
Publisher: Springer Nature
Release Date : 2022-02-28

Recycled Materials In Geotechnical And Pavement Applications written by Amin Chegenizadeh and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-28 with Science categories.


This book considers the application of recycled materials both in pavement and geotechnical engineering. Currently, Australia has faced the fundamental concern of recycling waste plastic. On 1 January 2018, China enforced a prohibition on the importation of waste plastic. China's ban is followed by other countries like India, Indonesia, and Malaysia. The ban caused many corporations to abandon waste collection agreements, and the stockpiling of waste, as there is nowhere to safely deposit this waste. This issue seems, to a great extent, to have placed Australia's recycling industry in a crisis. As a result, local councils will have to find strategic ways of recycling accumulated waste that will become a more significant issue in the coming years. In Australia, apart from economic growth, the road pavement has weakened rapidly as the current pavement unable to withstand this urgent traffic load demand. The adding of polymers to the mixtures improves the stiffness, rutting resistance, and fatigue cracking [1]. However, the application of virgin polymer is costly. Thus, using waste polymer such as waste plastic polymer is an inexpensive substitute. The potential for recycled plastic to improve the performance properties of asphalt mixtures has been demonstrated in many countries the UK, Canada, The Netherlands, and India [2]. Similarly, another application of recycled materials can be in geotechnical infrastructure. This book considers the application of recycled materials both in pavement and geotechnical engineering. References [1] Airey, G.D., Singleton, T.M., & Collop, A.C.(2002). Properties of polymer modified bitumen after rubber- bitumen interaction. Journal of Materials in Civil Engineering .14(4), 344- 354. [2] K. O'Farrell. Australian Plastics Recycling Survey- National Report. Australian Government, Department of Environment and Energy, Australia. Project reference,2018 A21502.



Federally Coordinated Program Of Highway Research Development And Technology


Federally Coordinated Program Of Highway Research Development And Technology
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1983

Federally Coordinated Program Of Highway Research Development And Technology written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983 with categories.




Effect Of Recycling Agents On The Structural Performance Of Recycled Asphalt Concrete Materials


Effect Of Recycling Agents On The Structural Performance Of Recycled Asphalt Concrete Materials
DOWNLOAD
Author : Dallas N. Little
language : en
Publisher:
Release Date : 1981

Effect Of Recycling Agents On The Structural Performance Of Recycled Asphalt Concrete Materials written by Dallas N. Little and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1981 with Pavements, Asphalt categories.




Evaluating The Effects Of Recycling Agents On Asphalt Mixtures With High Ras And Rap Binder Ratios


Evaluating The Effects Of Recycling Agents On Asphalt Mixtures With High Ras And Rap Binder Ratios
DOWNLOAD
Author : Amy Epps Martin
language : en
Publisher:
Release Date : 2020

Evaluating The Effects Of Recycling Agents On Asphalt Mixtures With High Ras And Rap Binder Ratios written by Amy Epps Martin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Asphalt categories.


"More than 90 percent of highways and roads in the United States are built using hot-mix asphalt (HMA) or warm-mix asphalt (WMA) mixtures, and these mixtures now recycle more than 99 percent of some 76.2 million tons of reclaimed asphalt pavement (RAP) and about 1 million tons of recycled asphalt shingles (RAS) each year. Cost savings in 2017 totaled approximately $2.2 billion with these recycled materials replacing virgin materials. The TRB National Cooperative Highway Research Program's NCHRP Research Report 927: Evaluating the Effects of Recycling Agents on Asphalt Mixtures with High RAS and RAP Binder Ratios presents an evaluation of how commercially available recycling agents affect the performance of asphalt mixtures incorporating RAP and RAS at high recycled binder ratios."--



Evaluation Of The Effects Of Recycled Aggregates On The Properties Of High Performance Concrete


Evaluation Of The Effects Of Recycled Aggregates On The Properties Of High Performance Concrete
DOWNLOAD
Author : Andreu Gonzàlez Corominas
language : en
Publisher:
Release Date : 2016

Evaluation Of The Effects Of Recycled Aggregates On The Properties Of High Performance Concrete written by Andreu Gonzàlez Corominas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


In recent decades, the use of High Performance Concrete (HPC) has grown vastly, being used in multiple applications with high requirements. However, the use of recycled aggregates (RA) has been mostly limited to conventional concrete. Many studies have defined limiting properties of RA, replacement ratios of natural aggregates and particular techniques to achieve suitable conventional concrete containing RA. Nonetheless, very few studies have been focused on the use of RA in the production of HPC. This study examines the behaviour of High Performance Recycled Aggregate Concrete (HPRAC) in physical, mechanical, durability and structural properties according to the RA content and its quality. RA were sourced from Construction and Demolition Waste of several categories: Recycled Concrete Aggregate (RCA) obtained from 40, 60 and 100 MPa concretes, Ceramic Waste Aggregates (CWA) and Recycled Mixed Aggregates (RMA). In the first experimental phase, the limiting replacement ratios of RA were established in order to achieve comparable HPRAC to the reference HPC with a design strength of 100 MPa. The physical, mechanical and durability properties were studied for concretes containing 20, 50 and 100% of coarse RCA and RMA, and 15 and 30% of fine CWA. According to the mechanical properties, 100% of coarse RCA can be used, as long as RA is sourced from a 60 MPa minimum-strength concrete waste. Nevertheless, durability behaviour was more influenced by the use of RA and replacement ratios of RCA could only be maintained on those obtained from parent concretes with the same quality as the new HPC. Moreover, significant reductions of the RA quality (RCA sourced from 40MPa - strength concretes or RMA) only permitted 20% replacement ratios. On the other hand, the concretes containing fine CWA (up to 30%) reached higher performances than those from conventional HPC. On the second experimental phase, fly ash was used in replacement of 30% of Portland cement in order to enhance the RCA performance. Keeping in mind prestressed concrete as potential application which requires high early-age strength, the concrete mixtures were also subjected to an initial steam curing cycle. The natural aggregates could be completely replaced by RCA sourced from the same quality HPC, producing improved mechanical properties and pore structures. It was determined that when using lower quality aggregates, the use of steam curing was mandatory to fulfil the standard requirements for prestressed concrete. The steam curing had negative effects on the long-term mechanical properties, however the steam-cured HPRAC had greater improvements on the pore structure and the mechanical properties than conventional HPC. The third experimental phase assesses the role of RCA in internal curing whose effect is significant in HPC. The effects of RCA were investigated in the plastic, autogenous and drying shrinkage of HPC, being the second of special interest in concretes with low water-cement ratio. The results revealed that the plastic and drying shrinkage became higher as the quality of the RCA decreased and the replacement ratio increased. However, a reduction in the autogenous shrinkage was proved to be possible by the use of a high content of lower quality RCA, since they acted as internal curing agents. The suitable behaviour of the HPRAC mixtures containing 50 and 100% of RCA sourced from 100 MPa-strength concretes enabled the production of prestressed concrete sleepers. The structural properties of HPRAC were tested on the conventional HPC and on both HPRAC sleepers. The prestressed concrete sleepers were subjected to static and dynamic load tests at rail-seat and centre sections. The structural requirements for prestressed concrete sleepers were extensively verified by sleepers made with HPRAC. Regardless of the replacement ratio, the HPRAC sleepers' results barely differed from those of conventional HPC sleepers.



Strategic Highway Research Program


Strategic Highway Research Program
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1986

Strategic Highway Research Program written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986 with Highway research categories.