[PDF] Manifolds And Geometry - eBooks Review

Manifolds And Geometry


Manifolds And Geometry
DOWNLOAD

Download Manifolds And Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Manifolds And Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Manifolds And Differential Geometry


Manifolds And Differential Geometry
DOWNLOAD
Author : Jeffrey M. Lee
language : en
Publisher: American Mathematical Society
Release Date : 2022-03-08

Manifolds And Differential Geometry written by Jeffrey M. Lee and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-08 with Mathematics categories.


Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hypersurfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.



Geometry Of Manifolds


Geometry Of Manifolds
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 2011-08-29

Geometry Of Manifolds written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-29 with Mathematics categories.


Geometry of Manifolds



Lectures On The Geometry Of Manifolds


Lectures On The Geometry Of Manifolds
DOWNLOAD
Author : Liviu I. Nicolaescu
language : en
Publisher: World Scientific
Release Date : 1996

Lectures On The Geometry Of Manifolds written by Liviu I. Nicolaescu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Mathematics categories.


The object of this book is to introduce the reader to some of the most important techniques of modern global geometry. In writing it we had in mind the beginning graduate student willing to specialize in this very challenging field of mathematics. The necessary prerequisite is a good knowledge of the calculus with several variables, linear algebra and some elementary point-set topology.We tried to address several issues. 1. The Language; 2. The Problems; 3. The Methods; 4. The Answers.Historically, the problems came first, then came the methods and the language while the answers came last. The space constraints forced us to change this order and we had to painfully restrict our selection of topics to be covered. This process always involves a loss of intuition and we tried to balance this by offering as many examples and pictures as often as possible. We test most of our results and techniques on two basic classes examples: surfaces (which can be easily visualized) and Lie groups (which can be elegantly algebraized). When possible we present several facets of the same issue.We believe that a good familiarity with the formalism of differential geometry is absolutely necessary in understanding and solving concrete problems and this is why we presented it in some detail. Every new concept is supported by concrete examples interesting not only from an academic point of view.Our interest is mainly in global questions and in particular the interdependencegeometry ? topology, local ? global.We had to develop many algebraico-topological techniques in the special context of smooth manifolds. We spent a big portion of this book discussing the DeRham cohomology and its ramifications: Poincar‚ duality, intersection theory, degree theory, Thom isomorphism, characteristic classes, Gauss-Bonnet etc. We tried to calculate the cohomology groups of as many as possible concrete examples and we had to do this without relying on the powerful apparatus of homotopy theory (CW-complexes etc.). Some of the proofs are not the most direct ones but the means are sometimes more interesting than the ends. For example in computing the cohomology of complex grassmannians we returned to classical invariant theory and used some brilliant but unadvertised old ideas.In the last part of the book we discuss elliptic partial differential equations. This requires a familiarity with functional analysis. We painstakingly described the proofs of elliptic Lp and H”lder estimates (assuming some deep results of harmonic analysis) for arbitrary elliptic operators with smooth coefficients. It is not a ?light meal? but the ideas are useful in a large number of instances. We present a few applications of these techniques (Hodge theory, uniformization theorem). We conclude with a close look to a very important class of elliptic operators namely the Dirac operators. We discuss their algebraic structure in some detail, Weizenb”ck formul‘ and many concrete examples.



Differential Geometry


Differential Geometry
DOWNLOAD
Author : Wolfgang Kühnel
language : en
Publisher: American Mathematical Soc.
Release Date : 2006

Differential Geometry written by Wolfgang Kühnel and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.



Differentiable Manifolds


Differentiable Manifolds
DOWNLOAD
Author : Lawrence Conlon
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

Differentiable Manifolds written by Lawrence Conlon and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.


This book is based on the full year Ph.D. qualifying course on differentiable manifolds, global calculus, differential geometry, and related topics, given by the author at Washington University several times over a twenty year period. It is addressed primarily to second year graduate students and well prepared first year students. Presupposed is a good grounding in general topology and modern algebra, especially linear algebra and the analogous theory of modules over a commutative, unitary ring. Although billed as a "first course" , the book is not intended to be an overly sketchy introduction. Mastery of this material should prepare the student for advanced topics courses and seminars in differen tial topology and geometry. There are certain basic themes of which the reader should be aware. The first concerns the role of differentiation as a process of linear approximation of non linear problems. The well understood methods of linear algebra are then applied to the resulting linear problem and, where possible, the results are reinterpreted in terms of the original nonlinear problem. The process of solving differential equations (i. e., integration) is the reverse of differentiation. It reassembles an infinite array of linear approximations, result ing from differentiation, into the original nonlinear data. This is the principal tool for the reinterpretation of the linear algebra results referred to above.



Differential Geometry Partial Differential Equations On Manifolds


Differential Geometry Partial Differential Equations On Manifolds
DOWNLOAD
Author : Robert Everist Greene
language : en
Publisher: American Mathematical Soc.
Release Date : 1993

Differential Geometry Partial Differential Equations On Manifolds written by Robert Everist Greene and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Mathematics categories.


The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem



Lectures On The Geometry Of Manifolds 2nd Edition


Lectures On The Geometry Of Manifolds 2nd Edition
DOWNLOAD
Author : Liviu I Nicolaescu
language : en
Publisher: World Scientific
Release Date : 2007-09-27

Lectures On The Geometry Of Manifolds 2nd Edition written by Liviu I Nicolaescu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-27 with Mathematics categories.


The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that “in learning the sciences examples are of more use than precepts”. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a “global and analytical bias”. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.



Geometry Of Manifolds


Geometry Of Manifolds
DOWNLOAD
Author : K. Shiohama
language : en
Publisher: Academic Press
Release Date : 1989-08-28

Geometry Of Manifolds written by K. Shiohama and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-08-28 with Mathematics categories.


This volume contains the papers presented at a special symposium organized to report on the increasing recent activities in differential geometry. The papers have been carefully reviewed by a panel of experts and pertain to the following areas of research: Dynamical Systems, Geometry of Submanifolds and Tensor Geometry, Lie Sphere Geometry, Riemannian Geometry, Yang-Mills Connections, and Geometry of the Laplace Operator.



Geometry Of Manifolds


Geometry Of Manifolds
DOWNLOAD
Author : Richard L. Bishop
language : en
Publisher: American Mathematical Soc.
Release Date : 2001

Geometry Of Manifolds written by Richard L. Bishop and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.


From the Preface of the First Edition: ``Our purpose in writing this book is to put material which we found stimulating and interesting as graduate students into form. It is intended for individual study and for use as a text for graduate level courses such as the one from which this material stems, given by Professor W. Ambrose at MIT in 1958-1959. Previously the material had been organized in roughly the same form by him and Professor I. M. Singer, and they in turn drew upon thework of Ehresmann, Chern, and E. Cartan. Our contributions have been primarily to fill out the material with details, asides and problems, and to alter notation slightly. ``We believe that this subject matter, besides being an interesting area for specialization, lends itself especially to a synthesisof several branches of mathematics, and thus should be studied by a wide spectrum of graduate students so as to break away from narrow specialization and see how their own fields are related and applied in other fields. We feel that at least part of this subject should be of interest not only to those working in geometry, but also to those in analysis, topology, algebra, and even probability and astronomy. In order that this book be meaningful, the reader's background should include realvariable theory, linear algebra, and point set topology.'' This volume is a reprint with few corrections of the original work published in 1964. Starting with the notion of differential manifolds, the first six chapters lay a foundation for the study of Riemannian manifolds through specializing the theoryof connections on principle bundles and affine connections. The geometry of Riemannian manifolds is emphasized, as opposed to global analysis, so that the theorems of Hopf-Rinow, Hadamard-Cartan, and Cartan's local isometry theorem are included, but no elliptic operator theory. Isometric immersions are treated elegantly and from a global viewpoint. In the final chapter are the more complicated estimates on which much of the research in Riemannian geometry is based: the Morse index theorem,Synge's theorems on closed geodesics, Rauch's comparison theorem, and the original proof of the Bishop volume-comparison theorem (with Myer's Theorem as a corollary). The first edition of this book was the origin of a modern treatment of global Riemannian geometry, using the carefully conceived notationthat has withstood the test of time. The primary source material for the book were the papers and course notes of brilliant geometers, including E. Cartan, C. Ehresmann, I. M. Singer, and W. Ambrose. It is tightly organized, uniformly very precise, and amazingly comprehensive for its length.



Conformal Geometry Of Discrete Groups And Manifolds


Conformal Geometry Of Discrete Groups And Manifolds
DOWNLOAD
Author : Boris N. Apanasov
language : en
Publisher: Walter de Gruyter
Release Date : 2011-06-24

Conformal Geometry Of Discrete Groups And Manifolds written by Boris N. Apanasov and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-24 with Mathematics categories.


The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)