Mastering The Machine

DOWNLOAD
Download Mastering The Machine PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering The Machine book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-25
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-25 with Computers categories.
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.
Mastering Machine Learning For Penetration Testing
DOWNLOAD
Author : Chiheb Chebbi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-27
Mastering Machine Learning For Penetration Testing written by Chiheb Chebbi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-27 with Language Arts & Disciplines categories.
Become a master at penetration testing using machine learning with Python Key Features Identify ambiguities and breach intelligent security systems Perform unique cyber attacks to breach robust systems Learn to leverage machine learning algorithms Book Description Cyber security is crucial for both businesses and individuals. As systems are getting smarter, we now see machine learning interrupting computer security. With the adoption of machine learning in upcoming security products, it’s important for pentesters and security researchers to understand how these systems work, and to breach them for testing purposes. This book begins with the basics of machine learning and the algorithms used to build robust systems. Once you’ve gained a fair understanding of how security products leverage machine learning, you'll dive into the core concepts of breaching such systems. Through practical use cases, you’ll see how to find loopholes and surpass a self-learning security system. As you make your way through the chapters, you’ll focus on topics such as network intrusion detection and AV and IDS evasion. We’ll also cover the best practices when identifying ambiguities, and extensive techniques to breach an intelligent system. By the end of this book, you will be well-versed with identifying loopholes in a self-learning security system and will be able to efficiently breach a machine learning system. What you will learn Take an in-depth look at machine learning Get to know natural language processing (NLP) Understand malware feature engineering Build generative adversarial networks using Python libraries Work on threat hunting with machine learning and the ELK stack Explore the best practices for machine learning Who this book is for This book is for pen testers and security professionals who are interested in learning techniques to break an intelligent security system. Basic knowledge of Python is needed, but no prior knowledge of machine learning is necessary.
Mastering Machine Learning On Aws
DOWNLOAD
Author : Dr. Saket S.R. Mengle
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-20
Mastering Machine Learning On Aws written by Dr. Saket S.R. Mengle and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.
Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.
Mastering Machine Learning With Core Ml And Python
DOWNLOAD
Author : Vardhan Agrawal
language : en
Publisher: AppCoda
Release Date : 2020-08-13
Mastering Machine Learning With Core Ml And Python written by Vardhan Agrawal and has been published by AppCoda this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-13 with Computers categories.
Machine learning, now more than ever, plays a pivotal role in almost everything we do in our digital lives. Whether it’s interacting with a virtual assistant like Siri or typing out a message to a friend, machine learning is the technology facilitating those actions. It’s clear that machine learning is here to stay, and as such, it’s a vital skill to have in the upcoming decades. This book covers Core ML in-depth. You will learn how to create and deploy your own machine learning model. On top of that, you will learn about Turi Create, Create ML, Keras, Firebase, and Jupyter Notebooks, just to name a few. These are a few examples of professional tools which are staples for many machine learning experts. By going through this book, you’ll also become proficient with Python, the language that’s most frequently used for machine learning. Plus, you would have created a handful of ready-to-use apps such as barcode scanners, image classifiers, and language translators. Most importantly, you will master the ins-and-outs of Core ML.
The Master Algorithm
DOWNLOAD
Author : Pedro Domingos
language : en
Publisher: Hachette UK
Release Date : 2015-09-22
The Master Algorithm written by Pedro Domingos and has been published by Hachette UK this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-22 with Computers categories.
Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
Mastering Machine Learning With R
DOWNLOAD
Author : Cory Lesmeister
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-10-28
Mastering Machine Learning With R written by Cory Lesmeister and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-28 with Computers categories.
Master machine learning techniques with R to deliver insights for complex projects About This Book Get to grips with the application of Machine Learning methods using an extensive set of R packages Understand the benefits and potential pitfalls of using machine learning methods Implement the numerous powerful features offered by R with this comprehensive guide to building an independent R-based ML system Who This Book Is For If you want to learn how to use R's machine learning capabilities to solve complex business problems, then this book is for you. Some experience with R and a working knowledge of basic statistical or machine learning will prove helpful. What You Will Learn Gain deep insights to learn the applications of machine learning tools to the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Familiarize yourself with fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Realize why and how to apply unsupervised learning methods In Detail Machine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data. The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series. The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages. Style and approach This is a book explains complicated concepts with easy to follow theory and real-world, practical applications. It demonstrates the power of R and machine learning extensively while highlighting the constraints.
Mastering Machine Appliqu
DOWNLOAD
Author : Harriet Hargrave
language : en
Publisher: C & T Pub
Release Date : 2002-02-01
Mastering Machine Appliqu written by Harriet Hargrave and has been published by C & T Pub this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-02-01 with Crafts & Hobbies categories.
A guide to machine applique. It covers everything needed in order to get started, and contains easy exercises to help the reader practise new skills. Each technique is described step by step, and there is discussion on how to choose and use the right needles, threads and more."
Principles
DOWNLOAD
Author : Ray Dalio
language : en
Publisher: Simon and Schuster
Release Date : 2017-09-19
Principles written by Ray Dalio and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-19 with Business & Economics categories.
Dalio "shares the unconventional principles that he's developed, refined, and used over the past forty years to create unique results in both life and business--and which any person or organization can adopt to help achieve their goals"--Amazon.com.
Mastering Mesos
DOWNLOAD
Author : Dipa Dubhashi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-05-26
Mastering Mesos written by Dipa Dubhashi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-26 with Computers categories.
The ultimate guide to managing, building, and deploying large-scale clusters with Apache Mesos About This Book Master the architecture of Mesos and intelligently distribute your task across clusters of machines Explore a wide range of tools and platforms that Mesos works with This real-world comprehensive and robust tutorial will help you become an expert Who This Book Is For The book aims to serve DevOps engineers and system administrators who are familiar with the basics of managing a Linux system and its tools What You Will Learn Understand the Mesos architecture Manually spin up a Mesos cluster on a distributed infrastructure Deploy a multi-node Mesos cluster using your favorite DevOps See the nuts and bolts of scheduling, service discovery, failure handling, security, monitoring, and debugging in an enterprise-grade, production cluster deployment Use Mesos to deploy big data frameworks, containerized applications, or even custom build your own applications effortlessly In Detail Apache Mesos is open source cluster management software that provides efficient resource isolations and resource sharing distributed applications or frameworks. This book will take you on a journey to enhance your knowledge from amateur to master level, showing you how to improve the efficiency, management, and development of Mesos clusters. The architecture is quite complex and this book will explore the difficulties and complexities of working with Mesos. We begin by introducing Mesos, explaining its architecture and functionality. Next, we provide a comprehensive overview of Mesos features and advanced topics such as high availability, fault tolerance, scaling, and efficiency. Furthermore, you will learn to set up multi-node Mesos clusters on private and public clouds. We will also introduce several Mesos-based scheduling and management frameworks or applications to enable the easy deployment, discovery, load balancing, and failure handling of long-running services. Next, you will find out how a Mesos cluster can be easily set up and monitored using the standard deployment and configuration management tools. This advanced guide will show you how to deploy important big data processing frameworks such as Hadoop, Spark, and Storm on Mesos and big data storage frameworks such as Cassandra, Elasticsearch, and Kafka. Style and approach This advanced guide provides a detailed step-by-step account of deploying a Mesos cluster. It will demystify the concepts behind Mesos.