[PDF] Mathematical Models Of Physics Problems - eBooks Review

Mathematical Models Of Physics Problems


Mathematical Models Of Physics Problems
DOWNLOAD

Download Mathematical Models Of Physics Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Models Of Physics Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Mathematical Models Of Physics Problems


Mathematical Models Of Physics Problems
DOWNLOAD
Author : Luis Alfredo Anchordoqui
language : en
Publisher: Nova Science Publishers
Release Date : 2014-05-14

Mathematical Models Of Physics Problems written by Luis Alfredo Anchordoqui and has been published by Nova Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-14 with Science categories.


This textbook is intended to provide a foundation for a one-semester introductory course on the advanced mathematical methods that form the cornerstones of the hard sciences and engineering. The work is suitable for first year graduate or advanced undergraduate students in the fields of Physics, Astronomy and Engineering. This text therefore employs a condensed narrative sufficient to prepare graduate and advanced undergraduate students for the level of mathematics expected in more advanced graduate physics courses, without too much exposition on related but non-essential material. In contrast to the two semesters traditionally devoted to mathematical methods for physicists, the material in this book has been quite distilled, making it a suitable guide for a one-semester course. The assumption is that the student, once versed in the fundamentals, can master more esoteric aspects of these topics on his or her own if and when the need arises during the course of conducting research. The book focuses on two core subjects: complex analysis and classical techniques for the solution of ordinary and partial differential equations. These topics are complemented with occasional terse reviews of other material, including linear algebra, to the extent required to ensure the book can be followed from end-to-end. This textbook is designed to provide a framework for a roughly 12 week course, with 3 weeks devoted to complex variables, a 1 week refresher on linear algebra, followed by 5 and 3 weeks devoted to ordinary and partial differential equations, respectively. This schedule leaves time for a couple of exams. The narrative is complemented with ample problem sets, including detailed guides to solving the problems.



Sequential Models Of Mathematical Physics


Sequential Models Of Mathematical Physics
DOWNLOAD
Author : Simon Serovajsky
language : en
Publisher: CRC Press
Release Date : 2019-01-22

Sequential Models Of Mathematical Physics written by Simon Serovajsky and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-22 with Mathematics categories.


The equations of mathematical physics are the mathematical models of the large class of phenomenon of physics, chemistry, biology, economics, etc. In Sequential Models of Mathematical Physics, the author considers the justification of the process of constructing mathematical models. The book seeks to determine the classic, generalized and sequential solutions, the relationship between these solutions, its direct physical sense, the methods of its practical finding, and its existence. Features Describes a sequential method based on the construction of space completion, as well as its applications in number theory, the theory of distributions, the theory of extremum, and mathematical physics Presentation of the material is carried out on the simplest example of a one-dimensional stationary heat transfer process; all necessary concepts and constructions are introduced and illustrated with elementary examples, which makes the material accessible to a wide area of readers The solution of a specific mathematical problem is obtained as a result of the joint application of methods and concepts from completely different mathematical directions



Mathematical Modeling


Mathematical Modeling
DOWNLOAD
Author : Ludmilla A. Uvarova
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Mathematical Modeling written by Ludmilla A. Uvarova and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


This volume contains review articles and original results obtained in various fields of modern science using mathematical simulation methods. The basis of the articles are the plenary and some section reports that were made and discussed at the Fourth International Mathematical Simulation Conference, held in Moscow on June 27 through July 1, 2000. The conference was devoted to the following scientific areas: • mathematical and computer discrete systems models; • non-linear excitation in condensed media; • complex systems evolution; • mathematical models in economics; • non-equilibrium processes kinematics; • dynamics and structure of the molecular and biomolecular systems; • mathematical transfer models in non-linear systems; • numerical simulation and algorithms; • turbulence and determined chaos; • chemical physics of polymer. This conference was supported by the Russian Ministry of Education, Russian foundation for Basic Research and Federal Program "Integration". This volume contains the following sections: 1. models of non-linear phenomena in physics; 2. numerical methods and computer simulations; 3. mathematical computer models of discrete systems; 4. mathematical models in economics; 5. non-linear models in chemical physics and physical chemistry; 6. mathematical models of transport processes in complex systems. In Sections One and Five a number of fundamental and sufficiently general problems, concerning real physical and physical-chemical systems simulation, is discussed.



Mathematical Models Of Physics Problems


Mathematical Models Of Physics Problems
DOWNLOAD
Author : Luis Alfredo Anchordoqui
language : en
Publisher: Nova Science Publishers
Release Date : 2013

Mathematical Models Of Physics Problems written by Luis Alfredo Anchordoqui and has been published by Nova Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematical physics categories.


This textbook is intended to provide a foundation for a one-semester introductory course on the advanced mathematical methods that form the cornerstones of the hard sciences and engineering. The work is suitable for first year graduate or advanced undergraduate students in the fields of Physics, Astronomy and Engineering. This text therefore employs a condensed narrative sufficient to prepare graduate and advanced undergraduate students for the level of mathematics expected in more advanced graduate physics courses, without too much exposition on related but non-essential material. In contrast to the two semesters traditionally devoted to mathematical methods for physicists, the material in this book has been quite distilled, making it a suitable guide for a one-semester course. The assumption is that the student, once versed in the fundamentals, can master more esoteric aspects of these topics on his or her own if and when the need arises during the course of conducting research. The book focuses on two core subjects: complex analysis and classical techniques for the solution of ordinary and partial differential equations. These topics are complemented with occasional terse reviews of other material, including linear algebra, to the extent required to ensure the book can be followed from end-to-end. This textbook is designed to provide a framework for a roughly 12 week course, with 3 weeks devoted to complex variables, a 1 week refresher on linear algebra, followed by 5 and 3 weeks devoted to ordinary and partial differential equations, respectively. This schedule leaves time for a couple of exams. The narrative is complemented with ample problem sets, including detailed guides to solving the problems.



Mathematical Modelling


Mathematical Modelling
DOWNLOAD
Author : Simon Serovajsky
language : en
Publisher: CRC Press
Release Date : 2021-11-24

Mathematical Modelling written by Simon Serovajsky and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-24 with Mathematics categories.


Mathematical Modelling sets out the general principles of mathematical modelling as a means comprehending the world. Within the book, the problems of physics, engineering, chemistry, biology, medicine, economics, ecology, sociology, psychology, political science, etc. are all considered through this uniform lens. The author describes different classes of models, including lumped and distributed parameter systems, deterministic and stochastic models, continuous and discrete models, static and dynamical systems, and more. From a mathematical point of view, the considered models can be understood as equations and systems of equations of different nature and variational principles. In addition to this, mathematical features of mathematical models, applied control and optimization problems based on mathematical models, and identification of mathematical models are also presented. Features Each chapter includes four levels: a lecture (main chapter material), an appendix (additional information), notes (explanations, technical calculations, literature review) and tasks for independent work; this is suitable for undergraduates and graduate students and does not require the reader to take any prerequisite course, but may be useful for researchers as well Described mathematical models are grouped both by areas of application and by the types of obtained mathematical problems, which contributes to both the breadth of coverage of the material and the depth of its understanding Can be used as the main textbook on a mathematical modelling course, and is also recommended for special courses on mathematical models for physics, chemistry, biology, economics, etc.



Mathematical Models Of Higher Orders


Mathematical Models Of Higher Orders
DOWNLOAD
Author : Vadim A. Krysko
language : en
Publisher: Springer
Release Date : 2019-02-11

Mathematical Models Of Higher Orders written by Vadim A. Krysko and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-11 with Mathematics categories.


This book offers a valuable methodological approach to the state-of-the-art of the classical plate/shell mathematical models, exemplifying the vast range of mathematical models of nonlinear dynamics and statics of continuous mechanical structural members. The main objective highlights the need for further study of the classical problem of shell dynamics consisting of mathematical modeling, derivation of nonlinear PDEs, and of finding their solutions based on the development of new and effective numerical techniques. The book is designed for a broad readership of graduate students in mechanical and civil engineering, applied mathematics, and physics, as well as to researchers and professionals interested in a rigorous and comprehensive study of modeling non-linear phenomena governed by PDEs.



Mathematical Models And Methods For Plasma Physics Volume 1


Mathematical Models And Methods For Plasma Physics Volume 1
DOWNLOAD
Author : Rémi Sentis
language : en
Publisher: Springer Science & Business Media
Release Date : 2014-01-31

Mathematical Models And Methods For Plasma Physics Volume 1 written by Rémi Sentis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-31 with Mathematics categories.


This monograph is dedicated to the derivation and analysis of fluid models occurring in plasma physics. It focuses on models involving quasi-neutrality approximation, problems related to laser propagation in a plasma, and coupling plasma waves and electromagnetic waves. Applied mathematicians will find a stimulating introduction to the world of plasma physics and a few open problems that are mathematically rich. Physicists who may be overwhelmed by the abundance of models and uncertain of their underlying assumptions will find basic mathematical properties of the related systems of partial differential equations. A planned second volume will be devoted to kinetic models. First and foremost, this book mathematically derives certain common fluid models from more general models. Although some of these derivations may be well known to physicists, it is important to highlight the assumptions underlying the derivations and to realize that some seemingly simple approximations turn out to be more complicated than they look. Such approximations are justified using asymptotic analysis wherever possible. Furthermore, efficient simulations of multi-dimensional models require precise statements of the related systems of partial differential equations along with appropriate boundary conditions. Some mathematical properties of these systems are presented which offer hints to those using numerical methods, although numerics is not the primary focus of the book.



Theoretical And Mathematical Physics


Theoretical And Mathematical Physics
DOWNLOAD
Author : Steeb Willi-hans
language : en
Publisher: World Scientific
Release Date : 2018-08-23

Theoretical And Mathematical Physics written by Steeb Willi-hans and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-23 with Science categories.


This updated and extended edition of the book combines the topics provided in the two parts of the previous editions as well as new topics. It is a comprehensive compilation covering most areas in mathematical and theoretical physics. The book provides a collection of problems together with their detailed solutions which will prove to be valuable to students as well as to researchers in the fields of mathematics, physics, engineering and other sciences. Each chapter provides a short introduction with the relevant definitions and notations. All relevant definitions are given. The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained. Stimulating supplementary problems are also provided in each chapter. Students can learn important principles and strategies required for problem solving. Teachers will also find this text useful as a supplement, since important concepts and techniques are developed in the problems. Introductory problems for both undergraduate and advanced undergraduate students are provided. More advanced problems together with their detailed solutions are collected, to meet the needs of graduate students and researchers. Problems included cover new fields in theoretical and mathematical physics such as tensor product, Lax representation, Bäcklund transformation, soliton equations, Hilbert space theory, uncertainty relation, entanglement, spin systems, Lie groups, Bose system, Fermi systems differential forms, Lie algebra valued differential forms, metric tensor fields, Hirota technique, Painlevé test, Bethe ansatz, Yang-Baxter relation, wavelets, gauge theory, differential geometry, string theory, chaos, fractals, complexity, ergodic theory, etc. A number of software implementations are also provided.



Mathematical Modeling Of Natural Phenomena


Mathematical Modeling Of Natural Phenomena
DOWNLOAD
Author : Ranis Ibragimov
language : en
Publisher:
Release Date : 2017-12

Mathematical Modeling Of Natural Phenomena written by Ranis Ibragimov and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12 with Differential equations categories.


Mathematical modeling in the form of differential equations is a branch of applied mathematics that includes topics from physics, engineering, environmental and computer science. The mathematical model is an approximate description of real processes. Mathematical modeling can be thought of as a three step process: 1) Physical situation; 2) Mathematical formulation; 3) Solution by purely operations of the mathematical problem; 4) Physical interpretation of the mathematical solution. Over the centuries, Step 2 took on a life of its own. Mathematics was studied on its own, devoid of any contact with a physical problem; this is known as pure mathematics. Applied mathematics and mathematical modeling deals with all three steps. Improvements of approximations or their extensions to more general situations may increase the complexity of mathematical models significantly. Before the 18th century, applied mathematics and its methods received the close attention of the best mathematicians who were driven by a desire to develop approximate descriptions of natural phenomena. The goal of asymptotic and perturbation methods is to find useful, approximate solutions to difficult problems that arise from the desire to understand a physical process. Exact solutions are usually either impossible to obtain or too complicated to be useful. Approximate, useful solutions are often tested by comparison with experiments or observations rather than by rigorous mathematical methods. Hence, the authors will not be concerned with rigorous proofs in this book. The derivation of approximate solutions can be done in two different ways. First, one can find an approximate set of equations that can be solved, or, one can find an approximate solution of a set of equations. Usually one must do both. Models of natural science show that the possibilities of applying differential equations for solving problems in the disciplines of the natural scientific cycle are quite wide. This book represents a unique blend of the traditional analytical and numerical methods enriched by the authors developments and applications to ocean and atmospheric sciences. The overall viewpoint taken is a theoretical, unified approach to the study of both the atmosphere and the oceans. One of the key features in this book is the combination of approximate forms of the basic mathematical equations of mathematical modeling with careful and precise analysis. The approximations are required to make any progress possible, while precision is needed to make the progress meaningful. This combination is often the most elusive for student to appreciate. This book aims to highlight this issue by means of accurate derivation of mathematical models with precise analysis and MATLAB applications. This book is meant for undergraduate and graduate students interested in applied mathematics, differential equations and mathematical modeling of real world problems. This book might also be interested in experts working in the field of physics concerning the ocean and atmosphere.



Mathematical Modeling And Applications In Nonlinear Dynamics


Mathematical Modeling And Applications In Nonlinear Dynamics
DOWNLOAD
Author : Albert C.J. Luo
language : en
Publisher: Springer
Release Date : 2016-01-28

Mathematical Modeling And Applications In Nonlinear Dynamics written by Albert C.J. Luo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-28 with Technology & Engineering categories.


The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems.