Matrix Algebra Useful For Statistics

DOWNLOAD
Download Matrix Algebra Useful For Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Matrix Algebra Useful For Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Matrix Algebra Useful For Statistics
DOWNLOAD
Author : Shayle R. Searle
language : en
Publisher: John Wiley & Sons
Release Date : 2017-05-01
Matrix Algebra Useful For Statistics written by Shayle R. Searle and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-01 with Mathematics categories.
A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. The Second Edition also: Contains new coverage on vector spaces and linear transformations and discusses computational aspects of matrices Covers the analysis of balanced linear models using direct products of matrices Analyzes multiresponse linear models where several responses can be of interest Includes extensive use of SAS, MATLAB, and R throughout Contains over 400 examples and exercises to reinforce understanding along with select solutions Includes plentiful new illustrations depicting the importance of geometry as well as historical interludes Matrix Algebra Useful for Statistics, Second Edition is an ideal textbook for advanced undergraduate and first-year graduate level courses in statistics and other related disciplines. The book is also appropriate as a reference for independent readers who use statistics and wish to improve their knowledge of matrix algebra. THE LATE SHAYLE R. SEARLE, PHD, was professor emeritus of biometry at Cornell University. He was the author of Linear Models for Unbalanced Data and Linear Models and co-author of Generalized, Linear, and Mixed Models, Second Edition, Matrix Algebra for Applied Economics, and Variance Components, all published by Wiley. Dr. Searle received the Alexander von Humboldt Senior Scientist Award, and he was an honorary fellow of the Royal Society of New Zealand. ANDRÉ I. KHURI, PHD, is Professor Emeritus of Statistics at the University of Florida. He is the author of Advanced Calculus with Applications in Statistics, Second Edition and co-author of Statistical Tests for Mixed Linear Models, all published by Wiley. Dr. Khuri is a member of numerous academic associations, among them the American Statistical Association and the Institute of Mathematical Statistics.
Matrix Algebra
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-06
Matrix Algebra written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-06 with Mathematics categories.
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. The first part of this book presents the relevant aspects of the theory of matrix algebra for applications in statistics. This part begins with the fundamental concepts of vectors and vector spaces, next covers the basic algebraic properties of matrices, then describes the analytic properties of vectors and matrices in the multivariate calculus, and finally discusses operations on matrices in solutions of linear systems and in eigenanalysis. This part is essentially self-contained. The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics. The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations. The book includes a large number of exercises with some solutions provided in an appendix.
Matrix Algebra And Its Applications To Statistics And Econometrics
DOWNLOAD
Author : Calyampudi Radhakrishna Rao
language : en
Publisher: World Scientific
Release Date : 1998-07-10
Matrix Algebra And Its Applications To Statistics And Econometrics written by Calyampudi Radhakrishna Rao and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-07-10 with Mathematics categories.
Written by two top statisticians with experience in teaching matrix methods for applications in statistics, econometrics and related areas, this book provides a comprehensive treatment of the latest techniques in matrix algebra. A well-balanced approach to discussing the mathematical theory and applications to problems in other areas is an attractive feature of the book. It can be used as a textbook in courses on matrix algebra for statisticians, econometricians and mathematicians as well. Some of the new developments of linear models are given in some detail using results of matrix algebra.
Linear Algebra And Matrix Analysis For Statistics
DOWNLOAD
Author : Sudipto Banerjee
language : en
Publisher: CRC Press
Release Date : 2014-06-06
Linear Algebra And Matrix Analysis For Statistics written by Sudipto Banerjee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-06 with Mathematics categories.
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
Basics Of Matrix Algebra For Statistics With R
DOWNLOAD
Author : Nick Fieller
language : en
Publisher: CRC Press
Release Date : 2018-09-03
Basics Of Matrix Algebra For Statistics With R written by Nick Fieller and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.
A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.
Matrix Algebra Useful For Statistics
DOWNLOAD
Author : Shayle R. Searle
language : en
Publisher: Wiley-Interscience
Release Date : 1982-09-02
Matrix Algebra Useful For Statistics written by Shayle R. Searle and has been published by Wiley-Interscience this book supported file pdf, txt, epub, kindle and other format this book has been release on 1982-09-02 with Mathematics categories.
Basic operations. Special matrices. Determinants. Inverse matrices. Rank. Canonical forms. Generalized inverses. Solving linear equations. Partitioned matrices. Eigenvalues and eigenvectors. Applications in statistics. The matrix algebra of regression analysis. An introduction to linear statistical model.
Matrices For Statistics
DOWNLOAD
Author : M. J. R. Healy
language : en
Publisher: Oxford University Press
Release Date : 2000
Matrices For Statistics written by M. J. R. Healy and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
Michael Healy's concise introduction to matrix theory has been re-written and revised to take into account recent developments in statistical practice. The more difficult topics have been expanded and some explanations have been simplified.
Numerical Linear Algebra For Applications In Statistics
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Numerical Linear Algebra For Applications In Statistics written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Numerical linear algebra is one of the most important subjects in the field of statistical computing. Statistical methods in many areas of application require computations with vectors and matrices. This book describes accurate and efficient computer algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. An understanding of numerical linear algebra requires basic knowledge both of linear algebra and of how numerical data are stored and manipulated in the computer. The book begins with a discussion of the basics of numerical computations, and then describes the relevant properties of matrix inverses, matrix factorizations, matrix and vector norms, and other topics in linear algebra; hence, the book is essentially self- contained. The topics addressed in this bookconstitute the most important material for an introductory course in statistical computing, and should be covered in every such course. The book includes exercises and can be used as a text for a first course in statistical computing or as supplementary text for various courses that emphasize computations. James Gentle is University Professor of Computational Statistics at George Mason University. During a thirteen-year hiatus from academic work before joining George Mason, he was director of research and design at the world's largest independent producer of Fortran and C general-purpose scientific software libraries. These libraries implement many algorithms for numerical linear algebra. He is a Fellow of the American Statistical Association and member of the International Statistical Institute. He has held several national
Matrix Algebra From A Statistician S Perspective
DOWNLOAD
Author : David A. Harville
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-27
Matrix Algebra From A Statistician S Perspective written by David A. Harville and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-27 with Mathematics categories.
A knowledge of matrix algebra is a prerequisite for the study of much of modern statistics, especially the areas of linear statistical models and multivariate statistics. This reference book provides the background in matrix algebra necessary to do research and understand the results in these areas. Essentially self-contained, the book is best-suited for a reader who has had some previous exposure to matrices. Solultions to the exercises are available in the author's "Matrix Algebra: Exercises and Solutions."
Matrix Algebra Useful For Statistics
DOWNLOAD
Author : Shayle R. Searle
language : en
Publisher: John Wiley & Sons
Release Date : 2017-04-10
Matrix Algebra Useful For Statistics written by Shayle R. Searle and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-10 with Mathematics categories.
A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. The Second Edition also: Contains new coverage on vector spaces and linear transformations and discusses computational aspects of matrices Covers the analysis of balanced linear models using direct products of matrices Analyzes multiresponse linear models where several responses can be of interest Includes extensive use of SAS, MATLAB, and R throughout Contains over 400 examples and exercises to reinforce understanding along with select solutions Includes plentiful new illustrations depicting the importance of geometry as well as historical interludes Matrix Algebra Useful for Statistics, Second Edition is an ideal textbook for advanced undergraduate and first-year graduate level courses in statistics and other related disciplines. The book is also appropriate as a reference for independent readers who use statistics and wish to improve their knowledge of matrix algebra. THE LATE SHAYLE R. SEARLE, PHD, was professor emeritus of biometry at Cornell University. He was the author of Linear Models for Unbalanced Data and Linear Models and co-author of Generalized, Linear, and Mixed Models, Second Edition, Matrix Algebra for Applied Economics, and Variance Components, all published by Wiley. Dr. Searle received the Alexander von Humboldt Senior Scientist Award, and he was an honorary fellow of the Royal Society of New Zealand. ANDRÉ I. KHURI, PHD, is Professor Emeritus of Statistics at the University of Florida. He is the author of Advanced Calculus with Applications in Statistics, Second Edition and co-author of Statistical Tests for Mixed Linear Models, all published by Wiley. Dr. Khuri is a member of numerous academic associations, among them the American Statistical Association and the Institute of Mathematical Statistics.