[PDF] Mechanical Design Development And Testing Of Bioinspired Legged Robots For Dynamic Locomotion - eBooks Review

Mechanical Design Development And Testing Of Bioinspired Legged Robots For Dynamic Locomotion


Mechanical Design Development And Testing Of Bioinspired Legged Robots For Dynamic Locomotion
DOWNLOAD

Download Mechanical Design Development And Testing Of Bioinspired Legged Robots For Dynamic Locomotion PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mechanical Design Development And Testing Of Bioinspired Legged Robots For Dynamic Locomotion book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mechanical Design Development And Testing Of Bioinspired Legged Robots For Dynamic Locomotion


Mechanical Design Development And Testing Of Bioinspired Legged Robots For Dynamic Locomotion
DOWNLOAD
Author : Alborz Aghamaleki Sarvestani
language : en
Publisher:
Release Date : 2022

Mechanical Design Development And Testing Of Bioinspired Legged Robots For Dynamic Locomotion written by Alborz Aghamaleki Sarvestani and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.




Bioinspired Legged Locomotion


Bioinspired Legged Locomotion
DOWNLOAD
Author : Maziar Ahmad Sharbafi
language : en
Publisher: Butterworth-Heinemann
Release Date : 2017-11-21

Bioinspired Legged Locomotion written by Maziar Ahmad Sharbafi and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-21 with Technology & Engineering categories.


Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. Presents state-of-the-art control approaches with biological relevance Provides a thorough understanding of the principles of organization of biological locomotion Teaches the organization of complex systems based on low-dimensional motion concepts/control Acts as a guideline reference for future robots/assistive devices with legged architecture Includes a selective bibliography on the most relevant published articles



Neurobiology Of Motor Control


Neurobiology Of Motor Control
DOWNLOAD
Author : Scott L. Hooper
language : en
Publisher: John Wiley & Sons
Release Date : 2017-09-05

Neurobiology Of Motor Control written by Scott L. Hooper and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-05 with Medical categories.


A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.



Walking Machines


Walking Machines
DOWNLOAD
Author : D. J. Todd
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-08

Walking Machines written by D. J. Todd and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-08 with Science categories.


The first chapter of this book traces the history of the development of walking machines from the original ideas of man-amplifiers and military rough-ground transport to today's diverse academic and industrial research and development projects. It concludes with a brief account of research on other unusual methods of locomotion. The heart of the book is the next three chapters on the theory and engineering of legged robots. Chapter 2 presents the basics of land loco motion, going on to consider the energetics of legged movement and the description and classification of gaits. Chapter 3, dealing with the mechanics of legged vehicles, goes into leg number and arrangement, and discusses mechanical design and actuation methods. Chapter 4 deals with analysis and control, describing the aims of control theory and the methods of modelling and control which have been used for both highly dynamic robots and multi-legged machines. Having dealt with the theory of control it is necessary to discuss the computing system on which control is to be implemented. This is done in Chapter 5, which covers architectures, sensing, algorithms and pro gramming languages. Chapter 6 brings together the threads of the theory and engineering discussed in earlier chapters and summarizes the current walking machine research projects. Finally, the applications, both actual and potential, of legged locomotion are described. Introduction Research into legged machines is expanding rapidly. There are several reasons why this is happening at this particular time.



Design Of Dynamic Legged Robots


Design Of Dynamic Legged Robots
DOWNLOAD
Author : Sangbae Kim
language : en
Publisher:
Release Date : 2017-03-20

Design Of Dynamic Legged Robots written by Sangbae Kim and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-20 with categories.


Focuses on the mechanical design of legged robots, from the history through to the present day. Discusses some of the main challenges to actuator design in legged robots and examines a recently developed technology called proprioceptive actuators in order to meet the needs of today's legged machines.



Human Modeling For Bio Inspired Robotics


Human Modeling For Bio Inspired Robotics
DOWNLOAD
Author : Jun Ueda
language : en
Publisher: Academic Press
Release Date : 2016-09-02

Human Modeling For Bio Inspired Robotics written by Jun Ueda and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-02 with Technology & Engineering categories.


Human Modelling for Bio-inspired Robotics: Mechanical Engineering in Assistive Technologies presents the most cutting-edge research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications. Intended to provide researchers both in academia and industry with key content on which to base their developments, this book is organized and written by senior experts in their fields. Human Modeling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies offers a system-level investigation into human mechanisms that inspire the development of assistive technologies and humanoid robotics, including topics in modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation and integration. Each chapter is written by a subject expert and discusses its background, research challenges, key outcomes, application, and future trends. This book will be especially useful for academic and industry researchers in this exciting field, as well as graduate-level students to bring them up to speed with the latest technology in mechanical design and control aspects of the area. Previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing is assumed. Presents the most recent research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications Covers background information and fundamental concepts of human modelling Includes modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation, integration, and safety issues Assumes previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing



Design Of Dynamic Legged Robots


Design Of Dynamic Legged Robots
DOWNLOAD
Author : Sangbae Kim
language : en
Publisher:
Release Date : 2017

Design Of Dynamic Legged Robots written by Sangbae Kim and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Artificial legs categories.


Animals exhibit remarkable locomotion capabilities across land, sea, and air in every corner of the world. On land, legged morphologies have evolved to manifest magnificent mobility over a wide range of surfaces. From the ability to use footholds for navigating a challenging mountain pass, to the capacity for running on a sandy beach, the adaptability afforded through legs motivates their prominence as the biologically preferred method of ground transportation. Inspired by these achievements in nature, robotics engineers have strived for decades to achieve similar dynamic locomotion capabilities in legged machines. Learning from animals' compliant structures and ways of utilizing them, engineers developed numerous novel mechanisms that allow for more dynamic, more efficient legged systems. These newly emerging robotic systems possess distinguishing mechanical characteristics in contrast to manufacturing robots in factories and pave the way for a new era of mobile robots to serve our society. Realizing the full capabilities of these new legged robots is a multi-factorial research problem, requiring coordinated advances in design, control, perception, state estimation, navigation and other areas. This review article concentrates particularly on the mechanical design of legged robots, with the aim to inform both future advances in novel mechanisms as well as the coupled problems described above. Essential technological components considered in mechanical design are discussed through historical review. Emerging design paradigms are then presented, followed by perspectives on their future applications.



Dynamic Locomotion With Four And Six Legged Robots


Dynamic Locomotion With Four And Six Legged Robots
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2000

Dynamic Locomotion With Four And Six Legged Robots written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with categories.


Stable and robust autonomous dynamic locomotion is demonstrated experimentally in a four and a six-legged robot. The Scout II quadruped runs on flat ground in a bounding gait, and was motivated by an effort to understand the minimal mechanical design and control complexity for dynamically stable locomotion. The RHex 0 hexapod runs dynamically in a tripod gait over flat and badly broken terrain. Its design and control was motivated by a collaboration of roboticists, biologists, and mathematicians, in an attempt to capture specific biomechanical locomotion principles. Both robots share some basic features: Compliant legs, each with only one actuated degree of freedom, and reliance on (task space) open loop controllers.



Intelligent Robotics And Applications


Intelligent Robotics And Applications
DOWNLOAD
Author : Haibin Yu
language : en
Publisher: Springer
Release Date : 2019-08-01

Intelligent Robotics And Applications written by Haibin Yu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-01 with Computers categories.


The volume set LNAI 11740 until LNAI 11745 constitutes the proceedings of the 12th International Conference on Intelligent Robotics and Applications, ICIRA 2019, held in Shenyang, China, in August 2019. The total of 378 full and 25 short papers presented in these proceedings was carefully reviewed and selected from 522 submissions. The papers are organized in topical sections as follows: Part I: collective and social robots; human biomechanics and human-centered robotics; robotics for cell manipulation and characterization; field robots; compliant mechanisms; robotic grasping and manipulation with incomplete information and strong disturbance; human-centered robotics; development of high-performance joint drive for robots; modular robots and other mechatronic systems; compliant manipulation learning and control for lightweight robot. Part II: power-assisted system and control; bio-inspired wall climbing robot; underwater acoustic and optical signal processing for environmental cognition; piezoelectric actuators and micro-nano manipulations; robot vision and scene understanding; visual and motional learning in robotics; signal processing and underwater bionic robots; soft locomotion robot; teleoperation robot; autonomous control of unmanned aircraft systems. Part III: marine bio-inspired robotics and soft robotics: materials, mechanisms, modelling, and control; robot intelligence technologies and system integration; continuum mechanisms and robots; unmanned underwater vehicles; intelligent robots for environment detection or fine manipulation; parallel robotics; human-robot collaboration; swarm intelligence and multi-robot cooperation; adaptive and learning control system; wearable and assistive devices and robots for healthcare; nonlinear systems and control. Part IV: swarm intelligence unmanned system; computational intelligence inspired robot navigation and SLAM; fuzzy modelling for automation, control, and robotics; development of ultra-thin-film, flexible sensors, and tactile sensation; robotic technology for deep space exploration; wearable sensing based limb motor function rehabilitation; pattern recognition and machine learning; navigation/localization. Part V: robot legged locomotion; advanced measurement and machine vision system; man-machine interactions; fault detection, testing and diagnosis; estimation and identification; mobile robots and intelligent autonomous systems; robotic vision, recognition and reconstruction; robot mechanism and design. Part VI: robot motion analysis and planning; robot design, development and control; medical robot; robot intelligence, learning and linguistics; motion control; computer integrated manufacturing; robot cooperation; virtual and augmented reality; education in mechatronics engineering; robotic drilling and sampling technology; automotive systems; mechatronics in energy systems; human-robot interaction.



Intelligent Robotics And Applications


Intelligent Robotics And Applications
DOWNLOAD
Author : Haibin Yu
language : en
Publisher: Springer
Release Date : 2019-08-05

Intelligent Robotics And Applications written by Haibin Yu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-05 with Computers categories.


The volume set LNAI 11740 until LNAI 11745 constitutes the proceedings of the 12th International Conference on Intelligent Robotics and Applications, ICIRA 2019, held in Shenyang, China, in August 2019. The total of 378 full and 25 short papers presented in these proceedings was carefully reviewed and selected from 522 submissions. The papers are organized in topical sections as follows: Part I: collective and social robots; human biomechanics and human-centered robotics; robotics for cell manipulation and characterization; field robots; compliant mechanisms; robotic grasping and manipulation with incomplete information and strong disturbance; human-centered robotics; development of high-performance joint drive for robots; modular robots and other mechatronic systems; compliant manipulation learning and control for lightweight robot. Part II: power-assisted system and control; bio-inspired wall climbing robot; underwater acoustic and optical signal processing for environmental cognition; piezoelectric actuators and micro-nano manipulations; robot vision and scene understanding; visual and motional learning in robotics; signal processing and underwater bionic robots; soft locomotion robot; teleoperation robot; autonomous control of unmanned aircraft systems. Part III: marine bio-inspired robotics and soft robotics: materials, mechanisms, modelling, and control; robot intelligence technologies and system integration; continuum mechanisms and robots; unmanned underwater vehicles; intelligent robots for environment detection or fine manipulation; parallel robotics; human-robot collaboration; swarm intelligence and multi-robot cooperation; adaptive and learning control system; wearable and assistive devices and robots for healthcare; nonlinear systems and control. Part IV: swarm intelligence unmanned system; computational intelligence inspired robot navigation and SLAM; fuzzy modelling for automation, control, and robotics; development of ultra-thin-film, flexible sensors, and tactile sensation; robotic technology for deep space exploration; wearable sensing based limb motor function rehabilitation; pattern recognition and machine learning; navigation/localization. Part V: robot legged locomotion; advanced measurement and machine vision system; man-machine interactions; fault detection, testing and diagnosis; estimation and identification; mobile robots and intelligent autonomous systems; robotic vision, recognition and reconstruction; robot mechanism and design. Part VI: robot motion analysis and planning; robot design, development and control; medical robot; robot intelligence, learning and linguistics; motion control; computer integrated manufacturing; robot cooperation; virtual and augmented reality; education in mechatronics engineering; robotic drilling and sampling technology; automotive systems; mechatronics in energy systems; human-robot interaction.