Modelling Inference And Data Analysis

DOWNLOAD
Download Modelling Inference And Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modelling Inference And Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01
Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Data Analysis Using Regression And Multilevel Hierarchical Models
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: Cambridge University Press
Release Date : 2007
Data Analysis Using Regression And Multilevel Hierarchical Models written by Andrew Gelman and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Introduction To Linear Models And Statistical Inference
DOWNLOAD
Author : Steven J. Janke
language : en
Publisher: John Wiley & Sons
Release Date : 2005-09-15
Introduction To Linear Models And Statistical Inference written by Steven J. Janke and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-09-15 with Mathematics categories.
A multidisciplinary approach that emphasizes learning by analyzing real-world data sets This book is the result of the authors' hands-on classroom experience and is tailored to reflect how students best learn to analyze linear relationships. The text begins with the introduction of four simple examples of actual data sets. These examples are developed and analyzed throughout the text, and more complicated examples of data sets are introduced along the way. Taking a multidisciplinary approach, the book traces the conclusion of the analyses of data sets taken from geology, biology, economics, psychology, education, sociology, and environmental science. As students learn to analyze the data sets, they master increasingly sophisticated linear modeling techniques, including: * Simple linear models * Multivariate models * Model building * Analysis of variance (ANOVA) * Analysis of covariance (ANCOVA) * Logistic regression * Total least squares The basics of statistical analysis are developed and emphasized, particularly in testing the assumptions and drawing inferences from linear models. Exercises are included at the end of each chapter to test students' skills before moving on to more advanced techniques and models. These exercises are marked to indicate whether calculus, linear algebra, or computer skills are needed. Unlike other texts in the field, the mathematics underlying the models is carefully explained and accessible to students who may not have any background in calculus or linear algebra. Most chapters include an optional final section on linear algebra for students interested in developing a deeper understanding. The many data sets that appear in the text are available on the book's Web site. The MINITAB(r) software program is used to illustrate many of the examples. For students unfamiliar with MINITAB(r), an appendix introduces the key features needed to study linear models. With its multidisciplinary approach and use of real-world data sets that bring the subject alive, this is an excellent introduction to linear models for students in any of the natural or social sciences.
Introduction To Statistical Modelling
DOWNLOAD
Author : Annette J. Dobson
language : en
Publisher: Springer
Release Date : 2013-11-11
Introduction To Statistical Modelling written by Annette J. Dobson and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
This book is about generalized linear models as described by NeIder and Wedderburn (1972). This approach provides a unified theoretical and computational framework for the most commonly used statistical methods: regression, analysis of variance and covariance, logistic regression, log-linear models for contingency tables and several more specialized techniques. More advanced expositions of the subject are given by McCullagh and NeIder (1983) and Andersen (1980). The emphasis is on the use of statistical models to investigate substantive questions rather than to produce mathematical descriptions of the data. Therefore parameter estimation and hypothesis testing are stressed. I have assumed that the reader is familiar with the most commonly used statistical concepts and methods and has some basic knowledge of calculus and matrix algebra. Short numerical examples are used to illustrate the main points. In writing this book I have been helped greatly by the comments and criticism of my students and colleagues, especially Anne Young. However, the choice of material, and the obscurities and errors are my responsibility and I apologize to the reader for any irritation caused by them. For typing the manuscript under difficult conditions I am grateful to Anne McKim, Jan Garnsey, Cath Claydon and Julie Latimer.
Statistical Models For Data Analysis
DOWNLOAD
Author : Paolo Giudici
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-07-01
Statistical Models For Data Analysis written by Paolo Giudici and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-01 with Mathematics categories.
The papers in this book cover issues related to the development of novel statistical models for the analysis of data. They offer solutions for relevant problems in statistical data analysis and contain the explicit derivation of the proposed models as well as their implementation. The book assembles the selected and refereed proceedings of the biannual conference of the Italian Classification and Data Analysis Group (CLADAG), a section of the Italian Statistical Society.
Probability And Statistical Inference
DOWNLOAD
Author : Miltiadis C. Mavrakakis
language : en
Publisher: CRC Press
Release Date : 2021-03-28
Probability And Statistical Inference written by Miltiadis C. Mavrakakis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-28 with Mathematics categories.
Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.
Hierarchical Modeling And Inference In Ecology
DOWNLOAD
Author : J. Andrew Royle
language : en
Publisher: Elsevier
Release Date : 2008-10-15
Hierarchical Modeling And Inference In Ecology written by J. Andrew Royle and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-15 with Science categories.
A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods.This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures.The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution* abundance models based on many sampling protocols, including distance sampling* capture-recapture models with individual effects* spatial capture-recapture models based on camera trapping and related methods* population and metapopulation dynamic models* models of biodiversity, community structure and dynamics - Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) - Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis - Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS - Computing support in technical appendices in an online companion web site
Applied Bayesian Modeling And Causal Inference From Incomplete Data Perspectives
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: John Wiley & Sons
Release Date : 2004-09-03
Applied Bayesian Modeling And Causal Inference From Incomplete Data Perspectives written by Andrew Gelman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-03 with Mathematics categories.
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.
Essential Statistical Inference
DOWNLOAD
Author : Dennis D. Boos
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-02-06
Essential Statistical Inference written by Dennis D. Boos and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-06 with Mathematics categories.
This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.
Time Series
DOWNLOAD
Author : Raquel Prado
language : en
Publisher: CRC Press
Release Date : 2010-05-21
Time Series written by Raquel Prado and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-21 with Mathematics categories.
Focusing on Bayesian approaches and computations using simulation-based methods for inference, Time Series: Modeling, Computation, and Inference integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling and analysis, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and emerging topics at research frontiers. The book presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. The authors also explore the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian tools, such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. They illustrate the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, and finance. Data sets, R and MATLAB® code, and other material are available on the authors’ websites. Along with core models and methods, this text offers sophisticated tools for analyzing challenging time series problems. It also demonstrates the growth of time series analysis into new application areas.