[PDF] Modern Approaches To Clinical Trials Using Sas - eBooks Review

Modern Approaches To Clinical Trials Using Sas


Modern Approaches To Clinical Trials Using Sas
DOWNLOAD

Download Modern Approaches To Clinical Trials Using Sas PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Approaches To Clinical Trials Using Sas book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Modern Approaches To Clinical Trials Using Sas


Modern Approaches To Clinical Trials Using Sas
DOWNLOAD
Author : Sandeep Menon
language : en
Publisher: SAS Institute
Release Date : 2015-12-09

Modern Approaches To Clinical Trials Using Sas written by Sandeep Menon and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-09 with Computers categories.


Get the tools you need to use SAS® in clinical trial design! Unique and multifaceted, Modern Approaches to Clinical Trials Using SAS: Classical, Adaptive, and Bayesian Methods, edited by Sandeep M. Menon and Richard C. Zink, thoroughly covers several domains of modern clinical trial design: classical, group sequential, adaptive, and Bayesian methods that are applicable to and widely used in various phases of pharmaceutical development. Written for biostatisticians, pharmacometricians, clinical developers, and statistical programmers involved in the design, analysis, and interpretation of clinical trials, as well as students in graduate and postgraduate programs in statistics or biostatistics, the book touches on a wide variety of topics, including dose-response and dose-escalation designs; sequential methods to stop trials early for overwhelming efficacy, safety, or futility; Bayesian designs that incorporate historical data; adaptive sample size re-estimation; adaptive randomization to allocate subjects to more effective treatments; and population enrichment designs. Methods are illustrated using clinical trials from diverse therapeutic areas, including dermatology, endocrinology, infectious disease, neurology, oncology, and rheumatology. Individual chapters are authored by renowned contributors, experts, and key opinion leaders from the pharmaceutical/medical device industry or academia. Numerous real-world examples and sample SAS code enable users to readily apply novel clinical trial design and analysis methodologies in practice.



Innovative Strategies Statistical Solutions And Simulations For Modern Clinical Trials


Innovative Strategies Statistical Solutions And Simulations For Modern Clinical Trials
DOWNLOAD
Author : Mark Chang
language : en
Publisher: CRC Press
Release Date : 2019-03-20

Innovative Strategies Statistical Solutions And Simulations For Modern Clinical Trials written by Mark Chang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-20 with Medical categories.


"This is truly an outstanding book. [It] brings together all of the latest research in clinical trials methodology and how it can be applied to drug development.... Chang et al provide applications to industry-supported trials. This will allow statisticians in the industry community to take these methods seriously." Jay Herson, Johns Hopkins University The pharmaceutical industry's approach to drug discovery and development has rapidly transformed in the last decade from the more traditional Research and Development (R & D) approach to a more innovative approach in which strategies are employed to compress and optimize the clinical development plan and associated timelines. However, these strategies are generally being considered on an individual trial basis and not as part of a fully integrated overall development program. Such optimization at the trial level is somewhat near-sighted and does not ensure cost, time, or development efficiency of the overall program. This book seeks to address this imbalance by establishing a statistical framework for overall/global clinical development optimization and providing tactics and techniques to support such optimization, including clinical trial simulations. Provides a statistical framework for achieve global optimization in each phase of the drug development process. Describes specific techniques to support optimization including adaptive designs, precision medicine, survival-endpoints, dose finding and multiple testing. Gives practical approaches to handling missing data in clinical trials using SAS. Looks at key controversial issues from both a clinical and statistical perspective. Presents a generous number of case studies from multiple therapeutic areas that help motivate and illustrate the statistical methods introduced in the book. Puts great emphasis on software implementation of the statistical methods with multiple examples of software code (both SAS and R). It is important for statisticians to possess a deep knowledge of the drug development process beyond statistical considerations. For these reasons, this book incorporates both statistical and "clinical/medical" perspectives.



Analysis Of Clinical Trials Using Sas


Analysis Of Clinical Trials Using Sas
DOWNLOAD
Author : Alex Dmitrienko
language : en
Publisher: SAS Institute
Release Date : 2017-07-17

Analysis Of Clinical Trials Using Sas written by Alex Dmitrienko and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-17 with Computers categories.


Analysis of Clinical Trials Using SAS®: A Practical Guide, Second Edition bridges the gap between modern statistical methodology and real-world clinical trial applications. Tutorial material and step-by-step instructions illustrated with examples from actual trials serve to define relevant statistical approaches, describe their clinical trial applications, and implement the approaches rapidly and efficiently using the power of SAS. Topics reflect the International Conference on Harmonization (ICH) guidelines for the pharmaceutical industry and address important statistical problems encountered in clinical trials. Commonly used methods are covered, including dose-escalation and dose-finding methods that are applied in Phase I and Phase II clinical trials, as well as important trial designs and analysis strategies that are employed in Phase II and Phase III clinical trials, such as multiplicity adjustment, data monitoring, and methods for handling incomplete data. This book also features recommendations from clinical trial experts and a discussion of relevant regulatory guidelines. This new edition includes more examples and case studies, new approaches for addressing statistical problems, and the following new technological updates: SAS procedures used in group sequential trials (PROC SEQDESIGN and PROC SEQTEST) SAS procedures used in repeated measures analysis (PROC GLIMMIX and PROC GEE) macros for implementing a broad range of randomization-based methods in clinical trials, performing complex multiplicity adjustments, and investigating the design and analysis of early phase trials (Phase I dose-escalation trials and Phase II dose-finding trials) Clinical statisticians, research scientists, and graduate students in biostatistics will greatly benefit from the decades of clinical research experience and the ready-to-use SAS macros compiled in this book.



Innovative Strategies Statistical Solutions And Simulations For Modern Clinical Trials


Innovative Strategies Statistical Solutions And Simulations For Modern Clinical Trials
DOWNLOAD
Author : Mark Chang
language : en
Publisher: CRC Press
Release Date : 2019-03-20

Innovative Strategies Statistical Solutions And Simulations For Modern Clinical Trials written by Mark Chang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-20 with Mathematics categories.


"This is truly an outstanding book. [It] brings together all of the latest research in clinical trials methodology and how it can be applied to drug development.... Chang et al provide applications to industry-supported trials. This will allow statisticians in the industry community to take these methods seriously." Jay Herson, Johns Hopkins University The pharmaceutical industry's approach to drug discovery and development has rapidly transformed in the last decade from the more traditional Research and Development (R & D) approach to a more innovative approach in which strategies are employed to compress and optimize the clinical development plan and associated timelines. However, these strategies are generally being considered on an individual trial basis and not as part of a fully integrated overall development program. Such optimization at the trial level is somewhat near-sighted and does not ensure cost, time, or development efficiency of the overall program. This book seeks to address this imbalance by establishing a statistical framework for overall/global clinical development optimization and providing tactics and techniques to support such optimization, including clinical trial simulations. Provides a statistical framework for achieve global optimization in each phase of the drug development process. Describes specific techniques to support optimization including adaptive designs, precision medicine, survival-endpoints, dose finding and multiple testing. Gives practical approaches to handling missing data in clinical trials using SAS. Looks at key controversial issues from both a clinical and statistical perspective. Presents a generous number of case studies from multiple therapeutic areas that help motivate and illustrate the statistical methods introduced in the book. Puts great emphasis on software implementation of the statistical methods with multiple examples of software code (both SAS and R). It is important for statisticians to possess a deep knowledge of the drug development process beyond statistical considerations. For these reasons, this book incorporates both statistical and "clinical/medical" perspectives.



Statistical Methods In Biomarker And Early Clinical Development


Statistical Methods In Biomarker And Early Clinical Development
DOWNLOAD
Author : Liang Fang
language : en
Publisher: Springer Nature
Release Date : 2019-12-26

Statistical Methods In Biomarker And Early Clinical Development written by Liang Fang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-26 with Medical categories.


This contributed volume offers a much-needed overview of the statistical methods in early clinical drug and biomarker development. Chapters are written by expert statisticians with extensive experience in the pharmaceutical industry and regulatory agencies. Because of this, the data presented is often accompanied by real world case studies, which will help make examples more tangible for readers. The many applications of statistics in drug development are covered in detail, making this volume a must-have reference. Biomarker development and early clinical development are the two critical areas on which the book focuses. By having the two sections of the book dedicated to each of these topics, readers will have a more complete understanding of how applying statistical methods to early drug development can help identify the right drug for the right patient at the right dose. Also presented are exciting applications of machine learning and statistical modeling, along with innovative methods and state-of-the-art advances, making this a timely and practical resource. This volume is ideal for statisticians, researchers, and professionals interested in pharmaceutical research and development. Readers should be familiar with the fundamentals of statistics and clinical trials.



Common Statistical Methods For Clinical Research With Sas Examples


Common Statistical Methods For Clinical Research With Sas Examples
DOWNLOAD
Author : Glenn A. Walker
language : en
Publisher: Sas Inst
Release Date : 1997

Common Statistical Methods For Clinical Research With Sas Examples written by Glenn A. Walker and has been published by Sas Inst this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Computers categories.


This updated edition provides clinical researchers with an invaluable aid for understanding the statistical methods cited most frequently in clinical protocols, statistical analysis plans, clinical and statistical reports, and medical journals. The text is written in a way that takes the non-statistician through each test using examples, yet substantive details are presented that benefit even the most experienced data analysts.



Quantitative Decisions In Drug Development


Quantitative Decisions In Drug Development
DOWNLOAD
Author : Christy Chuang-Stein
language : en
Publisher: Springer Nature
Release Date : 2021-09-03

Quantitative Decisions In Drug Development written by Christy Chuang-Stein and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-03 with Mathematics categories.


This book focuses on important decision points and evidence needed for making decisions at these points during the development of a new drug. It takes a holistic approach towards drug development by incorporating explicitly knowledge learned from the earlier part of the development and available historical information into decisions at later stages. In addition, the book shares lessons learned from several select examples published in the literature since the publication of the first edition. The second edition reiterates the need for making evidence-based Go/No Go decisions in drug development discussed in the first edition. It substantially expands several topics that have seen great advances since the publication of the first edition. The most noticeable additions include three adaptive trials conducted in recent years that offer excellent learning opportunities, the use of historical data in the design and analysis of clinical trials, and extending decision criteria to the cases when the primary endpoint is binary. The examples used to illustrate the additional materials all come from real trials with some post-trial reflections offered by the authors. The book begins with an overview of product development and regulatory approval pathways. It then discusses how to incorporate prior knowledge into study design and decision making at different stages of drug development. Prior knowledge includes information pertaining to historical controls. To assist decision making, the book discusses appropriate metrics and the formulation of go/no-go decisions for progressing a drug candidate to the next development stage. Using the concept of the positive predictive value in the field of diagnostics, the book leads readers to the assessment of the probability that an investigational product is effective given positive study outcomes. Lastly, the book points out common mistakes made by drug developers under the current drug-development paradigm. The book offers useful insights to statisticians, clinicians, regulatory affairs managers and decision-makers in the pharmaceutical industry who have a basic understanding of the drug-development process and the clinical trials conducted to support drug-marketing authorization. The authors provide software codes for select analytical approaches discussed in the book. The book includes enough technical details to allow statisticians to replicate the quantitative illustrations so that they can generate information to facilitate decision-making themselves.



Common Statistical Methods For Clinical Research With Sas Examples Third Edition


Common Statistical Methods For Clinical Research With Sas Examples Third Edition
DOWNLOAD
Author : Glenn Walker
language : en
Publisher: SAS Institute
Release Date : 2010-02-15

Common Statistical Methods For Clinical Research With Sas Examples Third Edition written by Glenn Walker and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-02-15 with Mathematics categories.


Glenn Walker and Jack Shostak's Common Statistical Methods for Clinical Research with SAS Examples, Third Edition, is a thoroughly updated edition of the popular introductory statistics book for clinical researchers. This new edition has been extensively updated to include the use of ODS graphics in numerous examples as well as a new emphasis on PROC MIXED. Straightforward and easy to use as either a text or a reference, the book is full of practical examples from clinical research to illustrate both statistical and SAS methodology. Each example is worked out completely, step by step, from the raw data. Common Statistical Methods for Clinical Research with SAS Examples, Third Edition, is an applications book with minimal theory. Each section begins with an overview helpful to nonstatisticians and then drills down into details that will be valuable to statistical analysts and programmers. Further details, as well as bonus information and a guide to further reading, are presented in the extensive appendices. This text is a one-source guide for statisticians that documents the use of the tests used most often in clinical research, with assumptions, details, and some tricks--all in one place. This book is part of the SAS Press program.



Biosimilar Clinical Development Scientific Considerations And New Methodologies


Biosimilar Clinical Development Scientific Considerations And New Methodologies
DOWNLOAD
Author : Kerry B. Barker
language : en
Publisher: CRC Press
Release Date : 2016-11-25

Biosimilar Clinical Development Scientific Considerations And New Methodologies written by Kerry B. Barker and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-25 with Mathematics categories.


Biosimilars have the potential to change the way we think about, identify, and manage health problems. They are already impacting both clinical research and patient care, and this impact will only grow as our understanding and technologies improve. Written by a team of experienced specialists in clinical development, this book discusses various potential drug development strategies, the design and analysis of pharmacokinetics (PK) studies, and the design and analysis of efficacy studies.



Handbook Of Methods For Designing Monitoring And Analyzing Dose Finding Trials


Handbook Of Methods For Designing Monitoring And Analyzing Dose Finding Trials
DOWNLOAD
Author : John O'Quigley
language : en
Publisher: CRC Press
Release Date : 2017-04-27

Handbook Of Methods For Designing Monitoring And Analyzing Dose Finding Trials written by John O'Quigley and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-27 with Mathematics categories.


Handbook of Methods for Designing, Monitoring, and Analyzing Dose-Finding Trials gives a thorough presentation of state-of-the-art methods for early phase clinical trials. The methodology of clinical trials has advanced greatly over the last 20 years and, arguably, nowhere greater than that of early phase studies. The need to accelerate drug development in a rapidly evolving context of targeted therapies, immunotherapy, combination treatments and complex group structures has provided the stimulus to these advances. Typically, we deal with very small samples, sequential methods that need to be efficient, while, at the same time adhering to ethical principles due to the involvement of human subjects. Statistical inference is difficult since the standard techniques of maximum likelihood do not usually apply as a result of model misspecification and parameter estimates lying on the boundary of the parameter space. Bayesian methods play an important part in overcoming these difficulties, but nonetheless, require special consideration in this particular context. The purpose of this handbook is to provide an expanded summary of the field as it stands and also, through discussion, provide insights into the thinking of leaders in the field as to the potential developments of the years ahead. With this goal in mind we present: An introduction to the field for graduate students and novices A basis for more established researchers from which to build A collection of material for an advanced course in early phase clinical trials A comprehensive guide to available methodology for practicing statisticians on the design and analysis of dose-finding experiments An extensive guide for the multiple comparison and modeling (MCP-Mod) dose-finding approach, adaptive two-stage designs for dose finding, as well as dose–time–response models and multiple testing in the context of confirmatory dose-finding studies. John O’Quigley is a professor of mathematics and research director at the French National Institute for Health and Medical Research based at the Faculty of Mathematics, University Pierre and Marie Curie in Paris, France. He is author of Proportional Hazards Regression and has published extensively in the field of dose finding. Alexia Iasonos is an associate attending biostatistician at the Memorial Sloan Kettering Cancer Center in New York. She has over one hundred publications in the leading statistical and clinical journals on the methodology and design of early phase clinical trials. Dr. Iasonos has wide experience in the actual implementation of model based early phase trials and has given courses in scientific meetings internationally. Björn Bornkamp is a statistical methodologist at Novartis in Basel, Switzerland, researching and implementing dose-finding designs in Phase II clinical trials. He is one of the co-developers of the MCP-Mod methodology for dose finding and main author of the DoseFinding R package. He has published numerous papers on dose finding, nonlinear models and Bayesian statistics, and in 2013 won the Royal Statistical Society award for statistical excellence in the pharmaceutical industry.