[PDF] Numerical Study Of Co2 Geological Storage Without Co2 Leakage Risk In A Saline Aquifer - eBooks Review

Numerical Study Of Co2 Geological Storage Without Co2 Leakage Risk In A Saline Aquifer


Numerical Study Of Co2 Geological Storage Without Co2 Leakage Risk In A Saline Aquifer
DOWNLOAD

Download Numerical Study Of Co2 Geological Storage Without Co2 Leakage Risk In A Saline Aquifer PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Study Of Co2 Geological Storage Without Co2 Leakage Risk In A Saline Aquifer book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Numerical Study Of Co2 Geological Storage Without Co2 Leakage Risk In A Saline Aquifer


Numerical Study Of Co2 Geological Storage Without Co2 Leakage Risk In A Saline Aquifer
DOWNLOAD
Author : 馬瑋謙
language : en
Publisher:
Release Date : 2018

Numerical Study Of Co2 Geological Storage Without Co2 Leakage Risk In A Saline Aquifer written by 馬瑋謙 and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.




Geological Storage Of Co2


Geological Storage Of Co2
DOWNLOAD
Author : Jan Martin Nordbotten
language : en
Publisher: John Wiley & Sons
Release Date : 2011-10-24

Geological Storage Of Co2 written by Jan Martin Nordbotten and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-24 with Technology & Engineering categories.


Despite the large research effort in both public and commercial companies, no textbook has yet been written on this subject. This book aims to provide an overview to the topic of Carbon Capture and Storage (CSS), while at the same time focusing on the dominant processes and the mathematical and numerical methods that need to be employed in order to analyze the relevant systems. The book clearly states the carbon problem and the role of CCS and carbon storage. Thereafter, it provides an introduction to single phase and multi-phase flow in porous media, including some of the most common mathematical analysis and an overview of numerical methods for the equations. A considerable part of the book discusses the appropriate scales of modeling, and how to formulate consistent governing equations at these scales. The book also illustrates real world data sets and how the ideas in the book can be exploited through combinations of analytical and numerical approaches.



Geological Storage Of Co2 In Deep Saline Formations


Geological Storage Of Co2 In Deep Saline Formations
DOWNLOAD
Author : Auli Niemi
language : en
Publisher: Springer
Release Date : 2017-02-24

Geological Storage Of Co2 In Deep Saline Formations written by Auli Niemi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-24 with Science categories.


This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.



Data Driven Analytics For The Geological Storage Of Co2


Data Driven Analytics For The Geological Storage Of Co2
DOWNLOAD
Author : Shahab Mohaghegh
language : en
Publisher: CRC Press
Release Date : 2018-05-20

Data Driven Analytics For The Geological Storage Of Co2 written by Shahab Mohaghegh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-20 with Science categories.


Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.



Geologic Carbon Sequestration


Geologic Carbon Sequestration
DOWNLOAD
Author : V. Vishal
language : en
Publisher: Springer
Release Date : 2016-05-11

Geologic Carbon Sequestration written by V. Vishal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-11 with Science categories.


This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.



Geological Storage Of Carbon Dioxide Co2


Geological Storage Of Carbon Dioxide Co2
DOWNLOAD
Author : J Gluyas
language : en
Publisher: Elsevier
Release Date : 2013-11-23

Geological Storage Of Carbon Dioxide Co2 written by J Gluyas and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-23 with Technology & Engineering categories.


Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind’s emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS). Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands. Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS



Geological Storage Of Co2 Long Term Security Aspects


Geological Storage Of Co2 Long Term Security Aspects
DOWNLOAD
Author : Axel Liebscher
language : en
Publisher: Springer
Release Date : 2015-02-21

Geological Storage Of Co2 Long Term Security Aspects written by Axel Liebscher and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-21 with Science categories.


This book explores the industrial use of secure, permanent storage technologies for carbon dioxide (CO2), especially geological CO2 storage. Readers are invited to discover how this greenhouse gas could be spared from permanent release into the atmosphere through storage in deep rock formations. Themes explored here include CO2 reservoir management, caprock formation, bio-chemical processes and fluid migration. Particular attention is given to groundwater protection, the improvement of sensor technology, borehole seals and cement quality. A collaborative work by scientists and industrial partners, this volume presents original research, it investigates several aspects of innovative technologies for medium-term use and it includes a detailed risk analysis. Coal-based power generation, energy consuming industrial processes (such as steel and cement) and the burning of biomass all result in carbon dioxide. Those involved in such industries who are considering geological storage of CO2, as well as earth scientists and engineers will value this book and the innovative monitoring methods described. Researchers in the field of computer imaging and pattern recognition will also find something of interest in these chapters.



Analytical Modeling Of Co2 Migration In Saline Aquifers For Geological Co2 Storage


Analytical Modeling Of Co2 Migration In Saline Aquifers For Geological Co2 Storage
DOWNLOAD
Author : Christopher William MacMinn
language : en
Publisher:
Release Date : 2008

Analytical Modeling Of Co2 Migration In Saline Aquifers For Geological Co2 Storage written by Christopher William MacMinn and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with categories.


Injection of carbon dioxide into geological formations for long-term storage is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Given the environmental and health risks associated with leakage of CO2 from such a storage site, it is critical to ensure that injected CO2 remain trapped underground for the foreseeable future. Careful site selection and effective injection methods are the two primary means of addressing this concern, and an accurate understanding of the subsurface spreading and migration of the CO2 plume during and after injection is essential for both purposes. It is well known that some CO2 will be trapped in the pore space of the aquifer rock as the plume migrates and spreads; this phenomenon, known as capillary trapping, is an ideal mechanism for geological CO2 storage because the trapped gas is immobile and distributed over a large area, greatly decreasing the risk of leakage and enhancing the effectiveness of slower, chemical trapping mechanisms. Here, we present an analytical model for the post-injection spreading of a plume of CO2 in a saline aquifer, both with and without capillary trapping. We solve the governing equation both analytically and numerically, and a comparison of the results for two different initial plume shapes demonstrates the importance of accounting for the true initial plume shape when capillary-trapping effects are considered. We nd that the plume volume converges to a self-similar, power-law trend at late times for any initial shape, but that the plume volume at the onset of this late-time behavior depends strongly on the initial shape even for weakly trapping systems.



Understanding The Plume Dynamics And Risk Associated With Co2 Injection In Deep Saline Aquifers


Understanding The Plume Dynamics And Risk Associated With Co2 Injection In Deep Saline Aquifers
DOWNLOAD
Author : Abhishek Kumar Gupta
language : en
Publisher:
Release Date : 2011

Understanding The Plume Dynamics And Risk Associated With Co2 Injection In Deep Saline Aquifers written by Abhishek Kumar Gupta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.


Geological sequestration of CO2 in deep saline reservoirs is one of the ways to reduce its continuous emission into the atmosphere to mitigate the greenhouse effect. The effectiveness of any CO2 sequestration operation depends on pore volume and the sequestration efficiency of the reservoir. Sequestration efficiency is defined here as the maximum storage with minimum risk of leakage to the overlying formations or to the surface. This can be characterized using three risk parameters i) the time the plume takes to reach the top seal; ii) maximum lateral extent of the plume and iii) the percentage of mobile CO2 present at any time. The selection among prospective saline reservoirs can be expedited by developing some semi-analytical correlations for these risk parameters which can be used in place of reservoir simulation study for each and every saline reservoir. Such correlations can reduce the cost and time for commissioning a geological site for CO2 sequestration. To develop such correlations, a database has been created from a large number of compositional reservoir simulations for different elementary reservoir parameters including porosity, permeability, permeability anisotropy, reservoir depth, thickness, dip, perforation interval and constant pressure far boundary condition. This database is used to formulate different correlations that relate the sequestration efficiency to reservoir properties and operating conditions. The various elementary reservoir parameters are grouped together to generate different variants of gravity number used in the correlations. We update a previously reported correlation for time to hit the top seal and develop new correlations for other two parameters using the newly created database. A correlation for percentage of trapped CO2 is also developed using a previously created similar database. We find that normalizing all risk parameters with their respective characteristic values yields reasonable correlations with different variants of gravity number. All correlations confirm the physics behind plume movement in a reservoir. The correlations reproduce almost all simulation results within a factor of two, and this is adequate for rapid ranking or screening of prospective storage reservoirs. CO2 injection in saline reservoirs on the scale of tens of millions of tonnes may result in fracturing, fault activation and leakage of brine along conductive pathways. Critical contour of overpressure (CoP) is a convenient proxy to determine the risk associated with pressure buildup at different location and time in the reservoir. The location of this contour varies depending on the target aquifer properties (porosity, permeability etc.) and the geology (presence and conductivity of faults). The CoP location also depends on relative permeability, and we extend the three-region injection model to derive analytical expressions for a specific CoP as a function of time. We consider two boundary conditions at the aquifer drainage radius, constant pressure or an infinite aquifer. The model provides a quick tool for estimating pressure profiles. Such tools are valuable for screening and ranking sequestration targets. Relative permeability curves measured on samples from seven potential storage formations are used to illustrate the effect on the CoPs. In the case of a constant pressure boundary and constant rate injection scenario, the CoP for small overpressures is time-invariant and independent of relative permeability. Depending on the relative values of overall mobilities of two-phase region and of brine region, the risk due to a critical CoP which lies in the two-phase region can either increase or decrease with time. In contrast, the risk due to a CoP in the drying region always decreases with time. The assumption of constant pressure boundaries is optimistic in the sense that CoPs extend the least distance from the injection well. We extend the analytical model to infinite-acting aquifers to get a more widely applicable estimate of risk. An analytical expression for pressure profile is developed by adapting water influx models from traditional reservoir engineering to the "three-region" saturation distribution. For infinite-acting boundary condition, the CoP trends depend on same factors as in the constant pressure case, and also depend upon the rate of change of aquifer boundary pressure with time. Commercial reservoir simulators are used to verify the analytical model for the constant pressure boundary condition. The CoP trends from the analytical solution and simulation results show a good match. To achieve safe and secure CO2 storage in underground reservoirs several state and national government agencies are working to develop regulatory frameworks to estimate various risks associated with CO2 injection in saline aquifers. Certification Framework (CF), developed by Oldenburg et al (2007) is a similar kind of regulatory approach to certify the safety and effectiveness of geologic carbon sequestration sites. CF is a simple risk assessment approach for evaluating CO2 and brine leakage risk associated only with subsurface processes and excludes compression, transportation, and injection-well leakage risk. Certification framework is applied to several reservoirs in different geologic settings. These include In Salah CO2 storage project Krechba, Algeria, Aquistore CO2 storage project Saskatchewan, Canada and WESTCARB CO2 storage project, Solano County, California. Compositional reservoir simulations in CMG-GEM are performed for CO2 injection in each storage reservoir to predict pressure build up risk and CO2 leakage risk. CO2 leakage risk is also estimated using the catalog of pre-computed reservoir simulation results. Post combustion CO2 capture is required to restrict the continuous increase of carbon content in the atmosphere. Coal fired electricity generating stations are the dominant players contributing to the continuous emissions of CO2 into the atmosphere. U.S. government has planned to install post combustion CO2 capture facility in many coal fired power plants including W.A. Parish electricity generating station in south Texas. Installing a CO2 capture facility in a coal fired power plant increases the capital cost of installation and operating cost to regenerate the turbine solvent (steam or natural gas) to maintain the stripper power requirement. If a coal-fired power plant with CO2 capture is situated over a viable source for geothermal heat, it may be desirable to use this heat source in the stripper. Geothermal brine can be used to replace steam or natural gas which in turn reduces the operating cost of the CO2 capture facility. High temperature brine can be produced from the underground geothermal brine reservoir and can be injected back to the reservoir after the heat from the hot brine is extracted. This will maintain the reservoir pressure and provide a long-term supply of hot brine to the stripper. Simulations were performed to supply CO2 capture facility equivalent to 60 MWe electric unit to capture 90% of the incoming CO2 in WA Parish electricity generating station. A reservoir simulation study in CMG-GEM is performed to evaluate the feasibility to recycle the required geothermal brine for 30 years time. This pilot study is scaled up to 15 times of the original capacity to generate 900 MWe stripping system to capture CO2 at surface.



Numerical Study Of Underground Co2 Storage And The Utilization In Depleted Gas Reservoirs


Numerical Study Of Underground Co2 Storage And The Utilization In Depleted Gas Reservoirs
DOWNLOAD
Author : Cheng Cao
language : de
Publisher: Cuvillier Verlag
Release Date : 2021-03-01

Numerical Study Of Underground Co2 Storage And The Utilization In Depleted Gas Reservoirs written by Cheng Cao and has been published by Cuvillier Verlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-01 with Technology & Engineering categories.


Carbon capture and storage (CCS) is considered as the most promising technology for slowing down the atmospheric CO2 emissions. However, CCS has not been implemented on large scale because of the related risks and the lack of financial incentives. Regarding the risks associated with CCS, a parametric uncertainty analysis for CO2 storage was conducted and the general roles of different key geomechanical and hydrogeological parameters in response to CO2 injection were determined, which is beneficial for guiding time and effort spent mitigating the uncertainty to acquire trustworthy model forecasts and risk assessments. Regarding the financial incentives of CCS, co-injection of CO2 with impurities associated with enhanced gas recovery was analyzed, which is advantageous for decreasing the cost on gas separation and generating additional economic profit. In addition, the utilization of CO2 as cushion gas in the underground gas storage reservoir was proposed and analyzed, which can also be beneficial for improving the cost-effectiveness of CCS. Overall, this thesis is advantageous for promoting the application of CCS on large scale and mitigating the atmospheric CO2 emissions. Die Kohlenstoffabscheidung und –speicherung (CCS) gilt als die vielversprechendste Technologie zur Verlangsamung der atmosphärischen CO2–Emissionen. CCS wurde jedoch aufgrund der damit verbundenen Risiken und des Mangels an finanziellen Anreizen nicht in großem Umfang implementiert. In Bezug auf die mit CCS verbundenen Risiken wurde eine parametrische Unsicherheitsanalyse für die CO2-Speicherung durchgeführt und die allgemeinen Rollen verschiedener geomechanischer und hydrogeologischer Schlüsselparameter als Reaktion auf die CO2-Injektion ermittelt. Dies ist hilfreich, um den Zeit- und Arbeitsaufwand für die Minderung der Unsicherheit zu verringern, um vertrauenswürdig zu werden Modellprognosen und Risikobewertungen. In Bezug auf die finanziellen Anreize von CCS wurde die gleichzeitige Injektion von CO2 mit Verunreinigungen im Zusammenhang mit einer verbesserten Gasrückgewinnung analysiert. Dies ist vorteilhaft, um die Kosten für die Gastrennung zu senken und zusätzlichen wirtschaftlichen Gewinn zu erzielen. Darüber hinaus wurde die Verwendung von CO2 als Polstergas im unterirdischen Gasspeicher vorgeschlagen und analysiert, was auch zur Verbesserung der Wirtschaftlichkeit von CCS beitragen kann. Insgesamt ist diese These vorteilhaft, um die Anwendung von CCS in großem Maßstab zu fördern und die atmosphärischen CO2-Emissionen zu verringern.