Parallel Processing Systems

DOWNLOAD
Download Parallel Processing Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parallel Processing Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Parallel Processing From Applications To Systems
DOWNLOAD
Author : Dan I. Moldovan
language : en
Publisher: Elsevier
Release Date : 2014-06-28
Parallel Processing From Applications To Systems written by Dan I. Moldovan and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Computers categories.
This text provides one of the broadest presentations of parallel processing available, including the structure of parallelprocessors and parallel algorithms. The emphasis is on mapping algorithms to highly parallel computers, with extensive coverage of array and multiprocessor architectures. Early chapters provide insightful coverage on the analysis of parallel algorithms and program transformations, effectively integrating a variety of material previously scattered throughout the literature. Theory and practice are well balanced across diverse topics in this concise presentation. For exceptional clarity and comprehension, the author presents complex material in geometric graphs as well as algebraic notation. Each chapter includes well-chosen examples, tables summarizing related key concepts and definitions, and a broad range of worked exercises. - Overview of common hardware and theoretical models, including algorithm characteristics and impediments to fast performance - Analysis of data dependencies and inherent parallelism through program examples, building from simple to complex - Graphic and explanatory coverage of program transformations - Easy-to-follow presentation of parallel processor structures and interconnection networks, including parallelizing and restructuring compilers - Parallel synchronization methods and types of parallel operating systems - Detailed descriptions of hypercube systems - Specialized chapters on dataflow and on AI architectures
Scheduling For Parallel Processing
DOWNLOAD
Author : Maciej Drozdowski
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-03-14
Scheduling For Parallel Processing written by Maciej Drozdowski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-14 with Computers categories.
Overview and Goals This book is dedicated to scheduling for parallel processing. Presenting a research ?eld as broad as this one poses considerable dif?culties. Scheduling for parallel computing is an interdisciplinary subject joining many ?elds of science and te- nology. Thus, to understand the scheduling problems and the methods of solving them it is necessary to know the limitations in related areas. Another dif?culty is that the subject of scheduling parallel computations is immense. Even simple search in bibliographical databases reveals thousands of publications on this topic. The - versity in understanding scheduling problems is so great that it seems impossible to juxtapose them in one scheduling taxonomy. Therefore, most of the papers on scheduling for parallel processing refer to one scheduling problem resulting from one way of perceiving the reality. Only a few publications attempt to arrange this ?eld of knowledge systematically. In this book we will follow two guidelines. One guideline is a distinction - tween scheduling models which comprise a set of scheduling problems solved by dedicated algorithms. Thus, the aim of this book is to present scheduling models for parallel processing, problems de?ned on the grounds of certain scheduling models, and algorithms solving the scheduling problems. Most of the scheduling problems are combinatorial in nature. Therefore, the second guideline is the methodology of computational complexity theory. Inthisbookwepresentfourexamplesofschedulingmodels. Wewillgodeepinto the models, problems, and algorithms so that after acquiring some understanding of them we will attempt to draw conclusions on their mutual relationships.
Parallel Programming
DOWNLOAD
Author : Thomas Rauber
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-13
Parallel Programming written by Thomas Rauber and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-13 with Computers categories.
Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.
Introduction To Parallel Processing
DOWNLOAD
Author : Behrooz Parhami
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-01-31
Introduction To Parallel Processing written by Behrooz Parhami and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-01-31 with Business & Economics categories.
This original text provides comprehensive coverage of parallel algorithms and architectures, beginning with fundamental concepts and continuing through architectural variations and aspects of implementation. Unlike the authors of similar texts, Professor Parhami reviews the circuit model and problemdriven parallel machines, variants of mesh architectures, and composite and hierarchical systems, among other subjects. With its balanced treatment of theory and practical designs, classtested lecture material and problems, and helpful case studies, the book is suited to graduate and upperlevel undergraduate students of advanced architecture or parallel processing.
Introduction To Parallel Computing
DOWNLOAD
Author : Ananth Grama
language : en
Publisher: Pearson Education
Release Date : 2003
Introduction To Parallel Computing written by Ananth Grama and has been published by Pearson Education this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Computers categories.
A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.
Parallel Processing And Parallel Algorithms
DOWNLOAD
Author : Seyed H Roosta
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-12-10
Parallel Processing And Parallel Algorithms written by Seyed H Roosta and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-12-10 with Computers categories.
Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.
Distributed And Cloud Computing
DOWNLOAD
Author : Kai Hwang
language : en
Publisher: Morgan Kaufmann
Release Date : 2013-12-18
Distributed And Cloud Computing written by Kai Hwang and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-18 with Computers categories.
Distributed and Cloud Computing: From Parallel Processing to the Internet of Things offers complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing. It is the first modern, up-to-date distributed systems textbook; it explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Topics covered by this book include: facilitating management, debugging, migration, and disaster recovery through virtualization; clustered systems for research or ecommerce applications; designing systems as web services; and social networking systems using peer-to-peer computing. The principles of cloud computing are discussed using examples from open-source and commercial applications, along with case studies from the leading distributed computing vendors such as Amazon, Microsoft, and Google. Each chapter includes exercises and further reading, with lecture slides and more available online. This book will be ideal for students taking a distributed systems or distributed computing class, as well as for professional system designers and engineers looking for a reference to the latest distributed technologies including cloud, P2P and grid computing. - Complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing - Includes case studies from the leading distributed computing vendors: Amazon, Microsoft, Google, and more - Explains how to use virtualization to facilitate management, debugging, migration, and disaster recovery - Designed for undergraduate or graduate students taking a distributed systems course—each chapter includes exercises and further reading, with lecture slides and more available online
Programming Massively Parallel Processors
DOWNLOAD
Author : David B. Kirk
language : en
Publisher: Newnes
Release Date : 2012-12-31
Programming Massively Parallel Processors written by David B. Kirk and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-31 with Computers categories.
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Parallel Computing Architectures And Apis
DOWNLOAD
Author : Vivek Kale
language : en
Publisher: CRC Press
Release Date : 2019-12-06
Parallel Computing Architectures And Apis written by Vivek Kale and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-06 with Computers categories.
Parallel Computing Architectures and APIs: IoT Big Data Stream Processing commences from the point high-performance uniprocessors were becoming increasingly complex, expensive, and power-hungry. A basic trade-off exists between the use of one or a small number of such complex processors, at one extreme, and a moderate to very large number of simpler processors, at the other. When combined with a high-bandwidth, interprocessor communication facility leads to significant simplification of the design process. However, two major roadblocks prevent the widespread adoption of such moderately to massively parallel architectures: the interprocessor communication bottleneck, and the difficulty and high cost of algorithm/software development. One of the most important reasons for studying parallel computing architectures is to learn how to extract the best performance from parallel systems. Specifically, you must understand its architectures so that you will be able to exploit those architectures during programming via the standardized APIs. This book would be useful for analysts, designers and developers of high-throughput computing systems essential for big data stream processing emanating from IoT-driven cyber-physical systems (CPS). This pragmatic book: Devolves uniprocessors in terms of a ladder of abstractions to ascertain (say) performance characteristics at a particular level of abstraction Explains limitations of uniprocessor high performance because of Moore’s Law Introduces basics of processors, networks and distributed systems Explains characteristics of parallel systems, parallel computing models and parallel algorithms Explains the three primary categorical representatives of parallel computing architectures, namely, shared memory, message passing and stream processing Introduces the three primary categorical representatives of parallel programming APIs, namely, OpenMP, MPI and CUDA Provides an overview of Internet of Things (IoT), wireless sensor networks (WSN), sensor data processing, Big Data and stream processing Provides introduction to 5G communications, Edge and Fog computing Parallel Computing Architectures and APIs: IoT Big Data Stream Processing discusses stream processing that enables the gathering, processing and analysis of high-volume, heterogeneous, continuous Internet of Things (IoT) big data streams, to extract insights and actionable results in real time. Application domains requiring data stream management include military, homeland security, sensor networks, financial applications, network management, web site performance tracking, real-time credit card fraud detection, etc.
Parallel Computing Architectures And Apis
DOWNLOAD
Author : Vivek Kale
language : en
Publisher: CRC Press
Release Date : 2019-12-06
Parallel Computing Architectures And Apis written by Vivek Kale and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-06 with Computers categories.
Parallel Computing Architectures and APIs: IoT Big Data Stream Processing commences from the point high-performance uniprocessors were becoming increasingly complex, expensive, and power-hungry. A basic trade-off exists between the use of one or a small number of such complex processors, at one extreme, and a moderate to very large number of simpler processors, at the other. When combined with a high-bandwidth, interprocessor communication facility leads to significant simplification of the design process. However, two major roadblocks prevent the widespread adoption of such moderately to massively parallel architectures: the interprocessor communication bottleneck, and the difficulty and high cost of algorithm/software development. One of the most important reasons for studying parallel computing architectures is to learn how to extract the best performance from parallel systems. Specifically, you must understand its architectures so that you will be able to exploit those architectures during programming via the standardized APIs. This book would be useful for analysts, designers and developers of high-throughput computing systems essential for big data stream processing emanating from IoT-driven cyber-physical systems (CPS). This pragmatic book: Devolves uniprocessors in terms of a ladder of abstractions to ascertain (say) performance characteristics at a particular level of abstraction Explains limitations of uniprocessor high performance because of Moore’s Law Introduces basics of processors, networks and distributed systems Explains characteristics of parallel systems, parallel computing models and parallel algorithms Explains the three primary categorical representatives of parallel computing architectures, namely, shared memory, message passing and stream processing Introduces the three primary categorical representatives of parallel programming APIs, namely, OpenMP, MPI and CUDA Provides an overview of Internet of Things (IoT), wireless sensor networks (WSN), sensor data processing, Big Data and stream processing Provides introduction to 5G communications, Edge and Fog computing Parallel Computing Architectures and APIs: IoT Big Data Stream Processing discusses stream processing that enables the gathering, processing and analysis of high-volume, heterogeneous, continuous Internet of Things (IoT) big data streams, to extract insights and actionable results in real time. Application domains requiring data stream management include military, homeland security, sensor networks, financial applications, network management, web site performance tracking, real-time credit card fraud detection, etc.