[PDF] Partial Differential Equations For Computational Science - eBooks Review

Partial Differential Equations For Computational Science


Partial Differential Equations For Computational Science
DOWNLOAD

Download Partial Differential Equations For Computational Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Partial Differential Equations For Computational Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Finite Difference Computing With Pdes


Finite Difference Computing With Pdes
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer
Release Date : 2017-06-21

Finite Difference Computing With Pdes written by Hans Petter Langtangen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-21 with Computers categories.


This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.



Computational Partial Differential Equations Using Matlab


Computational Partial Differential Equations Using Matlab
DOWNLOAD
Author : Jichun Li
language : en
Publisher: CRC Press
Release Date : 2008-10-20

Computational Partial Differential Equations Using Matlab written by Jichun Li and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-20 with Mathematics categories.


This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical



Numerical Methods For Evolutionary Differential Equations


Numerical Methods For Evolutionary Differential Equations
DOWNLOAD
Author : Uri M. Ascher
language : en
Publisher: SIAM
Release Date : 2008-09-04

Numerical Methods For Evolutionary Differential Equations written by Uri M. Ascher and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-04 with Mathematics categories.


Develops, analyses, and applies numerical methods for evolutionary, or time-dependent, differential problems.



Advanced Topics In Computational Partial Differential Equations


Advanced Topics In Computational Partial Differential Equations
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-22

Advanced Topics In Computational Partial Differential Equations written by Hans Petter Langtangen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-22 with Mathematics categories.


This book is about solving partial differential equations (PDEs). Such equa tions are used to model a wide range ofphenomena in virtually all fields ofsci ence and technology. Inthe last decade, the general availability of extremely powerful computers has shifted the focus in computational mathematics from simplified model problems to much more sophisticated models resembling in tricate features of real life. This change challenges our knowledge in computer science and in numerical analysis. The main objective ofthe present book is to teach modern,advanced tech niques for numerical PDE solution. The book also introduces several models arising in fields likefinance, medicine, material technology, and geology. Inor der to read this book, you must have a basic knowledge of partial differential equations and numerical methods for solving such equations. Furthermore, some background in finite element methods is required. You do not need to know Diffpack, although this programming environment is used in examples throughout the text. Basically, this book is about models, methods, and how to implement the methods. For the implementation part it is natural for us to use Diffpack as the programming environment, because making a PDE solver in Diffpack requires little amount of programming and because Diff pack has support for the advanced numerical methods treated in this book. Most chapters have a part on models and methods, and a part on imple mentation and Diffpack programming. The exposition is designed such that readers can focus only on the first part, if desired.



Petsc For Partial Differential Equations Numerical Solutions In C And Python


Petsc For Partial Differential Equations Numerical Solutions In C And Python
DOWNLOAD
Author : Ed Bueler
language : en
Publisher: SIAM
Release Date : 2020-10-22

Petsc For Partial Differential Equations Numerical Solutions In C And Python written by Ed Bueler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-22 with Mathematics categories.


The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.



Numerical Solution Of Partial Differential Equations On Parallel Computers


Numerical Solution Of Partial Differential Equations On Parallel Computers
DOWNLOAD
Author : Are Magnus Bruaset
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-05

Numerical Solution Of Partial Differential Equations On Parallel Computers written by Are Magnus Bruaset and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-05 with Mathematics categories.


Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.



Essential Partial Differential Equations


Essential Partial Differential Equations
DOWNLOAD
Author : David F. Griffiths
language : en
Publisher: Springer
Release Date : 2015-09-24

Essential Partial Differential Equations written by David F. Griffiths and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-24 with Mathematics categories.


This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.



Real Time Pde Constrained Optimization


Real Time Pde Constrained Optimization
DOWNLOAD
Author : Lorenz T. Biegler
language : en
Publisher: SIAM
Release Date : 2007-01-01

Real Time Pde Constrained Optimization written by Lorenz T. Biegler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.


Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.



Numerical Solution Of Partial Differential Equations In Science And Engineering


Numerical Solution Of Partial Differential Equations In Science And Engineering
DOWNLOAD
Author : Leon Lapidus
language : en
Publisher: John Wiley & Sons
Release Date : 2011-02-14

Numerical Solution Of Partial Differential Equations In Science And Engineering written by Leon Lapidus and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-14 with Mathematics categories.


From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.



Partial Differential Equations


Partial Differential Equations
DOWNLOAD
Author : Roland Glowinski
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-26

Partial Differential Equations written by Roland Glowinski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-26 with Science categories.


For more than 250 years partial di?erential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at ?rst and then those originating from - man activity and technological development. Mechanics, physics and their engineering applications were the ?rst to bene?t from the impact of partial di?erential equations on modeling and design, but a little less than a century ago the Schr ̈ odinger equation was the key opening the door to the application of partial di?erential equations to quantum chemistry, for small atomic and molecular systems at ?rst, but then for systems of fast growing complexity. The place of partial di?erential equations in mathematics is a very particular one: initially, the partial di?erential equations modeling natural phenomena were derived by combining calculus with physical reasoning in order to - press conservation laws and principles in partial di?erential equation form, leading to the wave equation, the heat equation, the equations of elasticity, the Euler and Navier–Stokes equations for ?uids, the Maxwell equations of electro-magnetics, etc. It is in order to solve ‘constructively’ the heat equation that Fourier developed the series bearing his name in the early 19th century; Fourier series (and later integrals) have played (and still play) a fundamental roleinbothpureandappliedmathematics,includingmanyareasquiteremote from partial di?erential equations. On the other hand, several areas of mathematics such as di?erential ge- etry have bene?ted from their interactions with partial di?erential equations.