[PDF] Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions - eBooks Review

Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions


Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions
DOWNLOAD

Download Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions


Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions
DOWNLOAD
Author : Izuru Takewaki
language : en
Publisher: Frontiers Media SA
Release Date : 2018-11-23

Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions written by Izuru Takewaki and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-23 with categories.


This eBook is the fourth in a series of books on the critical earthquake response of elastic or elastic-plastic structures under near-fault or long-duration ground motions, and includes six original research papers which were published in the specialty section Earthquake Engineering in ‘Frontiers in Built Environment’. Several extensions of the first eBook, the second eBook and the third eBook are included here. The first article is on the comparison of earthquake resilience of various building structures including innovative base-isolation systems and control systems. Pulse-type ground motions and resonant harmonic ground motions are used for investigating the earthquake resilience of those innovative building structures. The second article is concerned with the performance of an innovative seismic response controlled system with shear walls and concentrated dampers in lower stories. The resonant one-cycle sine waves and resonant harmonic waves are used as the input ground motions. The third article is related to the robustness evaluation of a base-isolation building-connection hybrid controlled building structure under the critical long-period and long-duration ground motion. The multi impulse is used as a substitute for a long-period and long-duration ground motion and the model reduction to a single-degree-of-freedom (SDOF) system is conducted to propose a simple response evaluation method. The fourth article is an extension of the previously proposed energy balance approach to a damped bilinear hysteretic SDOF system under a double impulse as a substitute for a near-fault ground motion. The energy absorption through viscous damping is incorporated appropriately in the energy balance and the application of the proposed method to actual recorded ground motions is presented. The fifth article is on the robustness evaluation of base-isolation building-connection hybrid controlled building structures considering uncertainties in deep ground. The earthquake ground motion amplitude at the earthquake bedrock is evaluated by the Boore’s stochastic method in 1983 including the fault rupture and the wave propagation into the earthquake bedrock. Then the phase angle property at the earthquake bedrock is investigated by introducing the concept of phase difference which is defined for each earthquake type. A wave at the ground surface nearly resonant to the base-isolation building-connection hybrid controlled building structure is produced by considering uncertainties in deep ground. The sixth article is concerned with the critical response of nonlinear base-isolated buildings considering soil-structure interaction under a double impulse as a substitute for a near-fault ground motion. The complicated model of a nonlinear base-isolated building on ground is modeled into an SDOF system after a few model reduction processes. The approach presented in this eBook, together with the previous eBooks, is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability and resilience of built environments in the elastic-plastic and nonlinear range.



Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions


Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2018

Performance Of Innovative Controlled Buildings Under Resonant And Critical Earthquake Ground Motions written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


This eBook is the fourth in a series of books on the critical earthquake response of elastic or elastic-plastic structures under near-fault or long-duration ground motions, and includes six original research papers which were published in the specialty section Earthquake Engineering in 'Frontiers in Built Environment'. Several extensions of the first eBook, the second eBook and the third eBook are included here. The first article is on the comparison of earthquake resilience of various building structures including innovative base-isolation systems and control systems. Pulse-type ground motions and resonant harmonic ground motions are used for investigating the earthquake resilience of those innovative building structures. The second article is concerned with the performance of an innovative seismic response controlled system with shear walls and concentrated dampers in lower stories. The resonant one-cycle sine waves and resonant harmonic waves are used as the input ground motions. The third article is related to the robustness evaluation of a base-isolation building-connection hybrid controlled building structure under the critical long-period and long-duration ground motion. The multi impulse is used as a substitute for a long-period and long-duration ground motion and the model reduction to a single-degree-of-freedom (SDOF) system is conducted to propose a simple response evaluation method. The fourth article is an extension of the previously proposed energy balance approach to a damped bilinear hysteretic SDOF system under a double impulse as a substitute for a near-fault ground motion. The energy absorption through viscous damping is incorporated appropriately in the energy balance and the application of the proposed method to actual recorded ground motions is presented. The fifth article is on the robustness evaluation of base-isolation building-connection hybrid controlled building structures considering uncertainties in deep ground. The earthquake ground motion amplitude at the earthquake bedrock is evaluated by the Boore's stochastic method in 1983 including the fault rupture and the wave propagation into the earthquake bedrock. Then the phase angle property at the earthquake bedrock is investigated by introducing the concept of phase difference which is defined for each earthquake type. A wave at the ground surface nearly resonant to the base-isolation building-connection hybrid controlled building structure is produced by considering uncertainties in deep ground. The sixth article is concerned with the critical response of nonlinear base-isolated buildings considering soil-structure interaction under a double impulse as a substitute for a near-fault ground motion. The complicated model of a nonlinear base-isolated building on ground is modeled into an SDOF system after a few model reduction processes. The approach presented in this eBook, together with the previous eBooks, is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability and resilience of built environments in the elastic-plastic and nonlinear range.



Advanced Design Of Pile Foundations Under Lateral Loading


Advanced Design Of Pile Foundations Under Lateral Loading
DOWNLOAD
Author : Wei Dong Guo
language : en
Publisher: CRC Press
Release Date : 2023-12-15

Advanced Design Of Pile Foundations Under Lateral Loading written by Wei Dong Guo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-15 with Technology & Engineering categories.


This book presents models that capture the nonlinear response of piles subjected to lateral forces. Utilising a consistent approach encompassing new mathematical models, it offers solutions presented as closed-form expressions and underpinned by the same set of 3-5 measurable soil-input parameters. These focus on nonlinear response of mono piles, anchored piles, pile groups, and torsional piles, as well as passive piles subjected to soil movement induced in shearing, sliding slopes or excavation, and earthquake shaking. The models can also be used for pipelines and similar beam structures. Solutions are provided in the form of design charts, with each parameter obtained using available test data and illustrated with real-world cases. The models reveal, for the first time, the mysterious mechanisms of amplification resulting from back-rotation, which have incurred the collapse of structures such as the Showa Bridge and Nicoll Highway, as well as the distortion of piles during earthquakes. Advanced Design of Pile Foundations Under Lateral Loading is ideal for practicing foundation engineers and students at graduate level. Wei Dong Guo is co-founder of Hans Innovation Group and former Associate Professor at the University of Wollongong, Australia. He is a Chartered Professional Engineer and is a Fellow of Engineers Australia by whom he was awarded the 2012 Warren Medal.



Improving The Earthquake Resilience Of Buildings


Improving The Earthquake Resilience Of Buildings
DOWNLOAD
Author : Izuru Takewaki
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-07-26

Improving The Earthquake Resilience Of Buildings written by Izuru Takewaki and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-26 with Technology & Engineering categories.


Engineers are always interested in the worst-case scenario. One of the most important and challenging missions of structural engineers may be to narrow the range of unexpected incidents in building structural design. Redundancy, robustness and resilience play an important role in such circumstances. Improving the Earthquake Resilience of Buildings: The worst case approach discusses the importance of worst-scenario approach for improved earthquake resilience of buildings and nuclear reactor facilities. Improving the Earthquake Resilience of Buildings: The worst case approach consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures and the related worst-case scenario in the structural design of ordinary simple building structures. The second part of the book focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. This allows for detailed consideration of a range of topics including: A consideration of damage of building structures in the critical excitation method for improved building-earthquake resilience, A consideration of uncertainties of structural parameters in structural control and base-isolation for improved building-earthquake resilience, and New insights in structural design of super high-rise buildings under long-period ground motions. Improving the Earthquake Resilience of Buildings: The worst case approach is a valuable resource for researchers and engineers interested in learning and applying the worst-case scenario approach in the seismic-resistant design for more resilient structures.



Critical Earthquake Response Of Elastic Plastic Structures Under Near Fault Or Long Duration Ground Motions Closed Form Approach Via Impulse Input


Critical Earthquake Response Of Elastic Plastic Structures Under Near Fault Or Long Duration Ground Motions Closed Form Approach Via Impulse Input
DOWNLOAD
Author : Izuru Takewaki
language : en
Publisher: Frontiers Media SA
Release Date : 2015-12-22

Critical Earthquake Response Of Elastic Plastic Structures Under Near Fault Or Long Duration Ground Motions Closed Form Approach Via Impulse Input written by Izuru Takewaki and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-22 with categories.


The specialty section Earthquake Engineering is one branch of Frontiers in Built Environment and welcomes critical and in-depth submissions on earthquake ground motions and their effects on buildings and infrastructures. Manuscripts should yield new insights and ultimately contribute to a safer and more reliable design of building structures and infrastructures. The scope includes the characterization of earthquake ground motions (e.g. near-fault, far-fault, short-period, long-period), their underlying properties, their intrinsic relationship with structural responses, and the true behaviors of building structures and infrastructures under risky and uncertain ground motions. More specific topics include recorded ground motions, generated ground motions, response spectra, stochastic modeling of ground motion, critical excitation, geotechnical aspects, soil mechanics, soil liquefaction, soil-structure interactions, pile foundations, earthquake input energy, structural control, passive control, active control, base-isolation, steel structures, reinforced concrete structures, wood structures, building retrofit, structural optimization, uncertainty analysis, robustness analysis, and redundancy analysis. This eBook includes four original research papers, in addition to the Specialty Grand Challenge article, on the critical earthquake response of elastic-plastic structures under near-fault or long-duration ground motions which were published in the specialty section Earthquake Engineering. In the early stage of dynamic nonlinear response analysis of structures around 1960s, a simple hysteretic structural model and a simple sinusoidal earthquake ground motion input were dealt with together with random inputs. The steady-state response was tackled by an equivalent linearization method developed by Caughey, Iwan and others. In fact, the resonance plays a key role in the earthquake-resistant design and it has a strong effect even in case of near-fault ground motions. In order to draw the steady-state response curve and investigate the resonant property, two kinds of repetition have to be introduced. One is a cycle, for one forced input frequency, of the initial guess of the steady-state response amplitude, the construction of the equivalent linear model, the analysis of the steady-state response amplitude using the equivalent linear model and the update of the equivalent linear model based on the computed steady-state response amplitude. The other is the sweeping over a range of forced input frequencies. This process is quite tedious. Four original research papers included in this eBook propose a new approach to overcome this difficulty. Kojima and Takewaki demonstrated that the elastic-plastic response as continuation of free-vibrations under impulse input can be derived in a closed form by a sophisticated energy approach without solving directly the equations of motion as differential equations. While, as pointed out above, the approach based on the equivalent linearization method requires the repetition of application of the linearized equations, the method by Kojima and Takewaki does not need any repetition. The double impulse, triple impulse and multiple impulses enable us to describe directly the critical timing of impulses (resonant frequency) which is not easy for the sinusoidal and other inputs without a repetitive procedure. It is important to note that, while most of the previous methods employ the equivalent linearization of the structural model with the input unchanged, the method treated in this eBook transforms the input into a series of impulses with the structural model unchanged. This characteristic guarantees high accuracy and reliability even in the large plastic deformation range. The approach presented in this eBook is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability of built environments in the elastic-plastic range



Evaluation Of Building Resilience Under Earthquake Input Using Single Double And Multiple Impulses


Evaluation Of Building Resilience Under Earthquake Input Using Single Double And Multiple Impulses
DOWNLOAD
Author : Izuru Takewaki
language : en
Publisher: Frontiers Media SA
Release Date : 2017-09-07

Evaluation Of Building Resilience Under Earthquake Input Using Single Double And Multiple Impulses written by Izuru Takewaki and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-07 with categories.


This eBook is the third in a series of books on the critical earthquake response of elastic or elastic-plastic structures under near-fault or long-duration ground motions, and includes four original research papers which were published in the specialty section Earthquake Engineering in ‘Frontiers in Built Environment’. Several extensions of the first eBook and the second eBook are included here. The first article is on the earthquake resilience of residential houses after repeated ground motions with high intensity. The 2016 Kumamoto earthquake brought a significant impact on the earthquake resilience of residential houses under repeated ground motions with high intensity in a few days. The necessary strength upgrade withstanding two repeated high-intensity ground motions was found to be 1.5. The second article is concerned with the smart enhancement of earthquake resilience of building structures under both near-fault and long-duration ground motions. A hybrid system of base-isolation and building connection control was proposed and its earthquake resilience to near-fault and long-duration ground motions was evaluated by a double impulse and a multiple impulse. It was demonstrated that the base-isolation is effective for near-fault ground motions and the building connection system using passive dampers is effective for long-duration ground motions. The third article is related to the robustness evaluation of elastic-plastic base-isolated high-rise buildings under resonant near-fault ground motions. The robustness function was introduced to evaluate quantitatively the robustness of elastic-plastic base-isolated high-rise buildings. The fourth article is an extension of the previously proposed energy balance approach to a bilinear elastic-plastic single-degree-of-freedom system under a long-duration sinusoidal ground motion. A historical difficulty in nonlinear vibration posed by Caughey (1960) and Iwan (1961) has been overcome in a smart manner after half a century. The approach presented in this eBook, together with the previous eBooks, is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability and resilience of built environments in the elastic-plastic and nonlinear range.



Critical Earthquake Response Of Elastic Plastic Structures Under Near Fault Ground Motions Closed Form Approach Via Impulse Input


Critical Earthquake Response Of Elastic Plastic Structures Under Near Fault Ground Motions Closed Form Approach Via Impulse Input
DOWNLOAD
Author : Izuru Takewaki
language : en
Publisher:
Release Date : 2016

Critical Earthquake Response Of Elastic Plastic Structures Under Near Fault Ground Motions Closed Form Approach Via Impulse Input written by Izuru Takewaki and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Engineering (General). Civil engineering (General) categories.


The specialty section Earthquake Engineering is one branch of Frontiers in Built Environment and welcomes critical and in-depth submissions on earthquake ground motions and their effects on buildings and infrastructures. Manuscripts should yield new insights and ultimately contribute to a safer and more reliable design of building structures and infrastructures. The scope includes the characterization of earthquake ground motions (e.g. near-fault, far-fault, short-period, long-period), their underlying properties, their intrinsic relationship with structural responses, and the true behaviors of building structures and infrastructures under risky and uncertain ground motions. More specific topics include recorded ground motions, generated ground motions, response spectra, stochastic modeling of ground motion, critical excitation, geotechnical aspects, soil mechanics, soil liquefaction, soil-structure interactions, pile foundations, earthquake input energy, structural control, passive control, active control, base-isolation, steel structures, reinforced concrete structures, wood structures, building retrofit, structural optimization, uncertainty analysis, robustness analysis, and redundancy analysis. This eBook includes four original research papers, in addition to the Specialty Grand Challenge article, on the critical earthquake response of elastic-plastic structures under near-fault or long-duration ground motions which were published in the specialty section Earthquake Engineering. In the early stage of dynamic nonlinear response analysis of structures around 1960s, a simple hysteretic structural model and a simple sinusoidal earthquake ground motion input were dealt with together with random inputs. The steady-state response was tackled by an equivalent linearization method developed by Caughey, Iwan and others. In fact, the resonance plays a key role in the earthquake-resistant design and it has a strong effect even in case of near-fault ground motions. In order to draw the steady-state response curve and investigate the resonant property, two kinds of repetition have to be introduced. One is a cycle, for one forced input frequency, of the initial guess of the steady-state response amplitude, the construction of the equivalent linear model, the analysis of the steady-state response amplitude using the equivalent linear model and the update of the equivalent linear model based on the computed steady-state response amplitude. The other is the sweeping ove ...



Response Control And Seismic Isolation Of Buildings


Response Control And Seismic Isolation Of Buildings
DOWNLOAD
Author : Masahiko Higashino
language : en
Publisher: Taylor & Francis
Release Date : 2006

Response Control And Seismic Isolation Of Buildings written by Masahiko Higashino and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Buildings categories.


This state of the art report from an internationally-based task group (TG44) of CIB presents a highly authoritative guide to the application of innovative technologies on response control and seismic isolation of buildings to practice worldwide.



Critical Excitation Methods In Earthquake Engineering


Critical Excitation Methods In Earthquake Engineering
DOWNLOAD
Author : Izuru Takewaki
language : en
Publisher: Elsevier Science Limited
Release Date : 2007

Critical Excitation Methods In Earthquake Engineering written by Izuru Takewaki and has been published by Elsevier Science Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Medical categories.


Since the occurrence of earthquakes and their properties are very uncertain even with the present knowledge, it is too difficult to define reasonable design ground motions especially for important buildings. In the seismic resistant design of building structures, the concept of 'performance-based design' has become a new paradigm guaranteeing the maximum satisfaction of building owners. The quality and reliability of the performance-based design certainly depend on the scientific rationality of design ground motions. In order to overcome this problem, a new paradigm has to be posed. To the author's knowledge, the concept of 'critical excitation' and the structural design based upon this concept can become one of such new paradigms. This book introduces a new probabilistic and energy-based critical excitation approach to overcome several problems in the scientific and rational modelling of ground motions. The author hopes that this book will help the development of new seismic-resistant design methods of buildings for such unpredicted or unpredictable ground motions. - First comprehensive book for critical excitation methods - Including updated, cutting-edge research - Applicable to other worst-case analysis problems - Including comprehensive review of critical excitation methods - Including verification by comprehensive recorded ground motions



Innovative Methodologies For Resilient Buildings And Cities


Innovative Methodologies For Resilient Buildings And Cities
DOWNLOAD
Author : Izuru Takewaki
language : en
Publisher: Frontiers Media SA
Release Date : 2019-09-19

Innovative Methodologies For Resilient Buildings And Cities written by Izuru Takewaki and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-19 with categories.


Resilient buildings and cities are in the center of common interests in modern academic communities for science and engineering related to built environment. Resilience of buildings and cities against multidisciplinary risks, e.g. earthquakes, strong winds, floods, etc., is strongly related to the sustainability of buildings and cities in which reduction of damage during a disaster and fast recovery from the damage are key issues. The reduction of damage is related to the level of resistance of buildings and the time of recovery is affected by the amount of supply of damaged members, assurance of restoration work, etc. Robustness, redundancy, resourcefulness, and rapidity are four key factors for supporting the full realization of design and construction of resilient buildings and cities. This research topic gathers cutting-edge and innovative research from various aspects, e.g. robustness of buildings and cities against earthquake risk, structural control and base-isolation for controlling damage risks, quantification of resilience measures, structural health monitoring, innovative structural engineering techniques for higher safety of buildings, resilience actions and tools at the urban scale, etc.