[PDF] Precision Lens Molding Of Glass A Process Perspective - eBooks Review

Precision Lens Molding Of Glass A Process Perspective


Precision Lens Molding Of Glass A Process Perspective
DOWNLOAD

Download Precision Lens Molding Of Glass A Process Perspective PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Precision Lens Molding Of Glass A Process Perspective book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Precision Lens Molding Of Glass A Process Perspective


Precision Lens Molding Of Glass A Process Perspective
DOWNLOAD
Author : Jayson J. Nelson
language : en
Publisher: Springer Nature
Release Date : 2020-04-10

Precision Lens Molding Of Glass A Process Perspective written by Jayson J. Nelson and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-10 with Technology & Engineering categories.


This book highlights the tools and processes used to produce high-quality glass molded optics using commercially available equipment. Combining scientific data with easy-to-understand explanations of specific molding issues and general industry information based on firsthand studies and experimentation, it provides useful formulas for readers involved in developing develop in-house molding capabilities, or those who supply molded glass optics. Many of the techniques described are based on insights gained from industry and research over the past 50 years, and can easily be applied by anyone familiar with glass molding or optics manufacturing. There is an abundance of information from around the globe, but knowledge comes from the application of information, and there is no knowledge without experience. This book provides readers with information, to allow them to gain knowledge and achieve success in their glass molding endeavors.



Trade Products Of The British Empire


Trade Products Of The British Empire
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1919

Trade Products Of The British Empire written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1919 with Great Britain categories.




Design And Fabrication Of Nonconventional Optical Components By Precision Glass Molding


Design And Fabrication Of Nonconventional Optical Components By Precision Glass Molding
DOWNLOAD
Author : Peng He
language : en
Publisher:
Release Date : 2014

Design And Fabrication Of Nonconventional Optical Components By Precision Glass Molding written by Peng He and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.


Precision glass molding is a net-shaping process to fabricate glass optics by replicating optical features from precision molds to glass at elevated temperature. The advantages of precision glass molding over traditional glass lens fabrication methods make it especially suitable for the production of optical components with complicated geometries, such as aspherical lenses, diffractive hybrid lenses, microlens arrays, etc. Despite of these advantages, a number of problems must be solved before this process can be used in industrial applications. The primary goal of this research is to determine the feasibility and performance of nonconventional optical components formed by precision glass molding. This research aimed to investigate glass molding by combing experiments and finite element method (FEM) based numerical simulations. The first step was to develop an integrated compensation solution for both surface deviation and refractive index drop of glass optics. An FEM simulation based on Tool-Narayanaswamy-Moynihan (TNM) model was applied to predict index drop of the molded optical glass. The predicted index value was then used to compensate for the optical design of the lens. Using commercially available general purpose software, ABAQUS, the entire process of glass molding was simulated to calculate the surface deviation from the adjusted lens geometry, which was applied to final mold shape modification. A case study on molding of an aspherical lens was conducted, demonstrating reductions in both geometry and wavefront error by more than 60%.



Investigation Of Injection Molding Process For High Precision Polymer Lens Manufacturing


Investigation Of Injection Molding Process For High Precision Polymer Lens Manufacturing
DOWNLOAD
Author : Chunning Huang
language : en
Publisher:
Release Date : 2008

Investigation Of Injection Molding Process For High Precision Polymer Lens Manufacturing written by Chunning Huang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Injection molding of plastics categories.


Abstract: Injection molding polymer optical components have long been used for its high volume, low cost and lightweight capability over traditional glass optics. However, the process has not been readily accepted in precision optical fabrication industry because several difficult issues such as geometry deviation, inhomogeneous index distribution, birefringence and freeform fabrication have hindered the implementation of injection molding process in high precision optical applications. This dissertation research was an attempt to create a methodology for injection molding process for high precision polymer lens manufacturing. The study included both experimental approach and numerical modeling in order to identify the proper polymer lens manufacturing processes. The scope of this research involved in both fundamental and systematic investigation in optical design, mold and lens fabrication, as well as optical metrology issues related to polymer lens manufacturing to obtain precision macro and micro polymer freeform optics with accurate geometry and proper optical performance by the state-of-the-art mold fabrication and molding technology. With the aid of DOE (design of experiment) and DEA (data envelopment analysis) methods, the critical process parameters were narrowed down and the optimal conditions were determined for lens geometry compensation. The mold compensation methodology was developed based on advanced freeform measurement and data analysis technology and slow tool servo freeform mold fabrication. The effects of the process parameters on optical performance such as birefringence, index distribution and surface scattering were carefully studied by theoretical and empirical analysis. Due to the complexity of the injection molding process, single process condition cannot fulfill all the requirements for lens quality, therefore balanced process parameters need to be selected as a compromise for desired specifications. Moreover, fabrication of macro Alvarez lens, micro Alvarez lens array, diffractive lens and Fresnel lens has proven that the advanced mold fabrication and injection molding process can provide an easy and quick solution for freeform optics. In addition, simulation with Moldflow MPI6.1 was implemented to verify the experiment results and the prediction of the simulation results was validated using experiment results. Experimental results also showed that injection molding process is capable for precision optics manufacturing with accurate mold compensation and process control.



The Failure Mechanisms Of Coated Precision Glass Molding Tools


The Failure Mechanisms Of Coated Precision Glass Molding Tools
DOWNLOAD
Author : Kyriakos Georgiadis
language : en
Publisher: Apprimus Wissenschaftsverlag
Release Date : 2015-10-19

The Failure Mechanisms Of Coated Precision Glass Molding Tools written by Kyriakos Georgiadis and has been published by Apprimus Wissenschaftsverlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-19 with Technology & Engineering categories.


Molding tools in precision glass molding fail easily, even with protective thin film coatings applied. In this work, various efficient methods for assessing glass-coating interactions are developed, including a new, automated testing rig. Analysis of the testing results provides a better understanding of these mechanisms and how they are influenced by material properties and process parameters, so that the appropriate measures can be taken to prolong the life of the molding tools.



Modeling Fracture Behavior In Precision Glass Molding


Modeling Fracture Behavior In Precision Glass Molding
DOWNLOAD
Author : Gang Liu
language : en
Publisher: Apprimus Wissenschaftsverlag
Release Date : 2018-08-21

Modeling Fracture Behavior In Precision Glass Molding written by Gang Liu and has been published by Apprimus Wissenschaftsverlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-21 with Technology & Engineering categories.


A temperature and strain rates dependent fracture model is developed based on Weibull statistics to quantitatively describe the brittle-ductile transition of glass fracture in precision glass molding process. Under the assistance of FEM simulation, this fracture model can be used to calculate the fracture probability of glass during the precision glass molding process. Meanwhile, the most probable fracture timing, location of fracture initiation and fracture pattern can be also predicted.



Fabrication Of Complex Optical Components


Fabrication Of Complex Optical Components
DOWNLOAD
Author : Ekkard Brinksmeier
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-14

Fabrication Of Complex Optical Components written by Ekkard Brinksmeier and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-14 with Technology & Engineering categories.


High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain giving a profound insight into present-day high-tech production.



Simulating The Precision Glass Molding Process


Simulating The Precision Glass Molding Process
DOWNLOAD
Author : Fei Wang
language : en
Publisher:
Release Date : 2014-04-22

Simulating The Precision Glass Molding Process written by Fei Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-22 with Manufacturing processes categories.




Comparison Of Computational Modeling Of Precision Glass Molding Of Infrared Lenses


Comparison Of Computational Modeling Of Precision Glass Molding Of Infrared Lenses
DOWNLOAD
Author : Mohamad Amin Moghaddas
language : en
Publisher:
Release Date : 2014

Comparison Of Computational Modeling Of Precision Glass Molding Of Infrared Lenses written by Mohamad Amin Moghaddas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.


The study of manufacturing process of an infrared lens by using a commercial glass molding machine, GP-10000HT, is the second step to figure out all the details of a real precision glass molding process that help us to provide a simulation that makes a better prediction of glass molding process.



Investigation Of Optical Effects Of Chalcogenide Glass In Precision Glass Molding And Applications On Infrared Micro Optical Manufacturing


Investigation Of Optical Effects Of Chalcogenide Glass In Precision Glass Molding And Applications On Infrared Micro Optical Manufacturing
DOWNLOAD
Author : Lin Zhang
language : en
Publisher:
Release Date : 2019

Investigation Of Optical Effects Of Chalcogenide Glass In Precision Glass Molding And Applications On Infrared Micro Optical Manufacturing written by Lin Zhang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Micromachining categories.


Precision glass molding (PGM) is being considered as an alternative to traditional methods of manufacturing large-volume, high-quality and low-cost optical components. In this process, glass optics is fabricated by replicating optical features from precision molds to glass at elevated temperature. Chalcogenide glasses are emerging as alternative infrared materials for their wide range infrared transmission, high refractive index and low phonon energy. In addition, chalcogenide glasses can be readily molded into precision optics at elevated temperature, slightly above its glass transition temperature (Tg), which in general is much lower compared to oxide glasses. The primary goal of this research is to evaluate the thermoforming mechanism of chalcogenide glass around Tg and investigate its refractive index change and residual stresses in molded lens in and post PGM. Firstly, a constitutive model is introduced to precisely predict the material behavior in PGM by integrating subroutines into a commercial finite element method (FEM) software. This modeling approach utilizes the Williams-Landel-Ferry (WLF) equation and Tool-Narayanaswamy-Moynihan (TNM) model to describe (shear) stress relaxation and structural relaxation behaviors, respectively. It is predicted that `index drop’ occurred inside the molded prism due to rapid thermal cycling and the cooling rate above Tg can introduce large geometry deviations to the molded optical lens. Secondly, the refractive index variations inside molded lenses are further evaluated by measuring deviation angle through a prism & wavefront changes through molded lens using a Shack-Hartmann wavefront sensor (SHS), while the residual stresses trapped inside the molded lenses are obtained by using a birefringence method. Measured results of the molded infrared lenses combining numerical simulation provide an opportunity for optical manufacturers to achieve a better understanding of the mechanism and optical performance variation of chalcogenide glasses in and post PGM. Upon completion of the aforementioned research, two typical micro IR optics are designed, fabricated and tested, an infrared SHS and a large field-of-view (FOV) microlens array, as demonstrations. A novel fabrication method combining virtual spindle based high-speed single-point diamond milling and PGM process is adopted to fabricate infrared microlens array. The uniqueness of the virtual spindle based single-point diamond milling is that the surface features can be constructed sequentially by spacing the virtual spindle axis at an arbitrary position based on a combination of rotational and transitional motions of the machine tool. After the mold insert is machined, it is employed to replicate the optical profile onto chalcogenide glass. On the other hand, an infrared compound-eye system consisting of 3×3 channels for a FOV of 48°×48° is developed. The freeform microlens array on a flat surface is utilized to steer and focus the incident light from all three dimensions (3D) to a two-dimension (2D) infrared imager. Using raytracing, the profiles of the freeform microlenses of each channel are optimized to obtain the best imaging performance. To avoid crosstalk among adjacent channels, a micro aperture array fabricated by 3D printing is mounted between the microlens array and IR imager. The imaging tests of the infrared compound-eye imaging system show that the asymmetrical freeform lenslets are capable of steering and forming legible images within the design FOV. Compared to a conventional infrared camera, this novel microlens array can achieve a considerably larger FOV while maintaining low manufacturing cost without sacrificing image quality. Finally, two rapid heating processes are explored and demonstrated by using graphene-coated silicon as an effective and high-performance mold material for precision glass molding. One process is based on induction heating and the other one is based on mid-infrared radiation. Since the graphene coating is very thin (~45 nm), a high heating rate of 5~20 °C/s can be achieved. The contact surface of the Si mold and the polymer substrate can be heated above the Tg within 20 s and subsequently cooled down to room temperature within tens of seconds after molding. The feasibility of this process is validated by the fabrication of optical gratings, micropillar matrices, and microlens arrays on polymethylmethacrylate (PMMA) substrate with high precision. The uniformity and surface geometries of the replicated optical elements are evaluated using an optical profilometer. Compared with conventional bulk heating molding process, this novel rapid localized heating process could improve replication efficiency with better geometrical fidelity.