Principles Of Machine Learning

DOWNLOAD
Download Principles Of Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Principles Of Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
The Principles Of Deep Learning Theory
DOWNLOAD
Author : Daniel A. Roberts
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-26
The Principles Of Deep Learning Theory written by Daniel A. Roberts and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-26 with Computers categories.
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Understanding Machine Learning
DOWNLOAD
Author : Shai Shalev-Shwartz
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-19
Understanding Machine Learning written by Shai Shalev-Shwartz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-19 with Computers categories.
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Principles And Theory For Data Mining And Machine Learning
DOWNLOAD
Author : Bertrand Clarke
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-07-21
Principles And Theory For Data Mining And Machine Learning written by Bertrand Clarke and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-21 with Computers categories.
Extensive treatment of the most up-to-date topics Provides the theory and concepts behind popular and emerging methods Range of topics drawn from Statistics, Computer Science, and Electrical Engineering
Ai Crash Course
DOWNLOAD
Author : Hadelin de Ponteves
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-29
Ai Crash Course written by Hadelin de Ponteves and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-29 with Computers categories.
Unlock the power of artificial intelligence with top Udemy AI instructor Hadelin de Ponteves. Key FeaturesLearn from friendly, plain English explanations and practical activitiesPut ideas into action with 5 hands-on projects that show step-by-step how to build intelligent softwareUse AI to win classic video games and construct a virtual self-driving carBook Description Welcome to the Robot World ... and start building intelligent software now! Through his best-selling video courses, Hadelin de Ponteves has taught hundreds of thousands of people to write AI software. Now, for the first time, his hands-on, energetic approach is available as a book. Starting with the basics before easing you into more complicated formulas and notation, AI Crash Course gives you everything you need to build AI systems with reinforcement learning and deep learning. Five full working projects put the ideas into action, showing step-by-step how to build intelligent software using the best and easiest tools for AI programming, including Python, TensorFlow, Keras, and PyTorch. AI Crash Course teaches everyone to build an AI to work in their applications. Once you've read this book, you're only limited by your imagination. What you will learnMaster the basics of AI without any previous experienceBuild fun projects, including a virtual-self-driving car and a robot warehouse workerUse AI to solve real-world business problemsLearn how to code in PythonDiscover the 5 principles of reinforcement learningCreate your own AI toolkitWho this book is for If you want to add AI to your skillset, this book is for you. It doesn't require data science or machine learning knowledge. Just maths basics (high school level).
Feature Engineering For Machine Learning
DOWNLOAD
Author : Alice Zheng
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-03-23
Feature Engineering For Machine Learning written by Alice Zheng and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-23 with Computers categories.
Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering. Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples. You’ll examine: Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms Natural text techniques: bag-of-words, n-grams, and phrase detection Frequency-based filtering and feature scaling for eliminating uninformative features Encoding techniques of categorical variables, including feature hashing and bin-counting Model-based feature engineering with principal component analysis The concept of model stacking, using k-means as a featurization technique Image feature extraction with manual and deep-learning techniques
Principles And Labs For Deep Learning
DOWNLOAD
Author : Shih-Chia Huang
language : en
Publisher: Academic Press
Release Date : 2021-07-06
Principles And Labs For Deep Learning written by Shih-Chia Huang and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-06 with Science categories.
Principles and Labs for Deep Learning provides the knowledge and techniques needed to help readers design and develop deep learning models. Deep Learning techniques are introduced through theory, comprehensively illustrated, explained through the TensorFlow source code examples, and analyzed through the visualization of results. The structured methods and labs provided by Dr. Huang and Dr. Le enable readers to become proficient in TensorFlow to build deep Convolutional Neural Networks (CNNs) through custom APIs, high-level Keras APIs, Keras Applications, and TensorFlow Hub. Each chapter has one corresponding Lab with step-by-step instruction to help the reader practice and accomplish a specific learning outcome. Deep Learning has been successfully applied in diverse fields such as computer vision, audio processing, robotics, natural language processing, bioinformatics and chemistry. Because of the huge scope of knowledge in Deep Learning, a lot of time is required to understand and deploy useful, working applications, hence the importance of this new resource. Both theory lessons and experiments are included in each chapter to introduce the techniques and provide source code examples to practice using them. All Labs for this book are placed on GitHub to facilitate the download. The book is written based on the assumption that the reader knows basic Python for programming and basic Machine Learning. - Introduces readers to the usefulness of neural networks and Deep Learning methods - Provides readers with in-depth understanding of the architecture and operation of Deep Convolutional Neural Networks - Demonstrates the visualization needed for designing neural networks - Provides readers with an in-depth understanding of regression problems, binary classification problems, multi-category classification problems, Variational Auto-Encoder, Generative Adversarial Network, and Object detection
Deep Learning From Scratch
DOWNLOAD
Author : Seth Weidman
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-09
Deep Learning From Scratch written by Seth Weidman and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-09 with Computers categories.
With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You’ll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way. Author Seth Weidman shows you how neural networks work using a first principles approach. You’ll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you’ll be set up for success on all future deep learning projects. This book provides: Extremely clear and thorough mental models—accompanied by working code examples and mathematical explanations—for understanding neural networks Methods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented framework Working implementations and clear-cut explanations of convolutional and recurrent neural networks Implementation of these neural network concepts using the popular PyTorch framework
Principles Of Data Mining
DOWNLOAD
Author : David J. Hand
language : en
Publisher: MIT Press
Release Date : 2001-08-17
Principles Of Data Mining written by David J. Hand and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08-17 with Computers categories.
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Deep Learning In Gaming And Animations
DOWNLOAD
Author : Vikas Chaudhary
language : en
Publisher: CRC Press
Release Date : 2021-12-07
Deep Learning In Gaming And Animations written by Vikas Chaudhary and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-07 with Computers categories.
Over the last decade, progress in deep learning has had a profound and transformational effect on many complex problems, including speech recognition, machine translation, natural language understanding, and computer vision. As a result, computers can now achieve human-competitive performance in a wide range of perception and recognition tasks. Many of these systems are now available to the programmer via a range of so-called cognitive services. More recently, deep reinforcement learning has achieved ground-breaking success in several complex challenges. This book makes an enormous contribution to this beautiful, vibrant area of study: an area that is developing rapidly both in breadth and depth. Deep learning can cope with a broader range of tasks (and perform those tasks to increasing levels of excellence). This book lays a good foundation for the core concepts and principles of deep learning in gaming and animation, walking you through the fundamental ideas with expert ease. This book progresses in a step-by-step manner. It reinforces theory with a full-fledged pedagogy designed to enhance students' understanding and offer them a practical insight into its applications. Also, some chapters introduce and cover novel ideas about how artificial intelligence (AI), deep learning, and machine learning have changed the world in gaming and animation. It gives us the idea that AI can also be applied in gaming, and there are limited textbooks in this area. This book comprehensively addresses all the aspects of AI and deep learning in gaming. Also, each chapter follows a similar structure so that students, teachers, and industry experts can orientate themselves within the text. There are few books in the field of gaming using AI. Deep Learning in Gaming and Animations teaches you how to apply the power of deep learning to build complex reasoning tasks. After being exposed to the foundations of machine and deep learning, you will use Python to build a bot and then teach it the game's rules. This book also focuses on how different technologies have revolutionized gaming and animation with various illustrations.
Artificial Intelligence With Python
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-01-27
Artificial Intelligence With Python written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-27 with Computers categories.
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.