[PDF] Probabilistic And Causal Inference - eBooks Review

Probabilistic And Causal Inference


Probabilistic And Causal Inference
DOWNLOAD

Download Probabilistic And Causal Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probabilistic And Causal Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Causality


Causality
DOWNLOAD
Author : Judea Pearl
language : en
Publisher: Cambridge University Press
Release Date : 2009-09-14

Causality written by Judea Pearl and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-14 with Computers categories.


Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...



Probabilistic Causality


Probabilistic Causality
DOWNLOAD
Author : Ellery Eells
language : en
Publisher: Cambridge University Press
Release Date : 1991-03-29

Probabilistic Causality written by Ellery Eells and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-03-29 with Business & Economics categories.


In this important first book in the series Cambridge Studies in Probability, Induction and Decision Theory, Ellery Eells explores and refines current philosophical conceptions of probabilistic causality. In a probabilistic theory of causation, causes increase the probability of their effects rather than necessitate their effects in the ways traditional deterministic theories have specified. Philosophical interest in this subject arises from attempts to understand population sciences as well as indeterminism in physics. Taking into account issues involving spurious correlation, probabilistic causal interaction, disjunctive causal factors, and temporal ideas, Professor Eells advances the analysis of what it is for one factor to be a positive causal factor for another. A salient feature of the book is a new theory of token level probabilistic causation in which the evolution of the probability of a later event from an earlier event is central.



Causality Probability And Time


Causality Probability And Time
DOWNLOAD
Author : Samantha Kleinberg
language : en
Publisher: Cambridge University Press
Release Date : 2013

Causality Probability And Time written by Samantha Kleinberg and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Computers categories.


Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.



Elements Of Causal Inference


Elements Of Causal Inference
DOWNLOAD
Author : Jonas Peters
language : en
Publisher: MIT Press
Release Date : 2017-11-29

Elements Of Causal Inference written by Jonas Peters and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-29 with Computers categories.


A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.



Causality Probability And Medicine


Causality Probability And Medicine
DOWNLOAD
Author : Donald Gillies
language : en
Publisher: Routledge
Release Date : 2018-08-15

Causality Probability And Medicine written by Donald Gillies and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-15 with Philosophy categories.


Why is understanding causation so important in philosophy and the sciences? Should causation be defined in terms of probability? Whilst causation plays a major role in theories and concepts of medicine, little attempt has been made to connect causation and probability with medicine itself. Causality, Probability, and Medicine is one of the first books to apply philosophical reasoning about causality to important topics and debates in medicine. Donald Gillies provides a thorough introduction to and assessment of competing theories of causality in philosophy, including action-related theories, causality and mechanisms, and causality and probability. Throughout the book he applies them to important discoveries and theories within medicine, such as germ theory; tuberculosis and cholera; smoking and heart disease; the first ever randomized controlled trial designed to test the treatment of tuberculosis; the growing area of philosophy of evidence-based medicine; and philosophy of epidemiology. This book will be of great interest to students and researchers in philosophy of science and philosophy of medicine, as well as those working in medicine, nursing and related health disciplines where a working knowledge of causality and probability is required.



Probabilistic Reasoning In Intelligent Systems


Probabilistic Reasoning In Intelligent Systems
DOWNLOAD
Author : Judea Pearl
language : en
Publisher: Morgan Kaufmann
Release Date : 1988-09

Probabilistic Reasoning In Intelligent Systems written by Judea Pearl and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-09 with Computers categories.


Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.



Support Vector Machines


Support Vector Machines
DOWNLOAD
Author : Ingo Steinwart
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-09-15

Support Vector Machines written by Ingo Steinwart and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-15 with Computers categories.


Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.



Causal Inference In Statistics


Causal Inference In Statistics
DOWNLOAD
Author : Judea Pearl
language : en
Publisher: John Wiley & Sons
Release Date : 2016-01-25

Causal Inference In Statistics written by Judea Pearl and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-25 with Mathematics categories.


CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.



An Introduction To Causal Inference


An Introduction To Causal Inference
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2009

An Introduction To Causal Inference written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.


This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.



The Book Of Why


The Book Of Why
DOWNLOAD
Author : Judea Pearl
language : en
Publisher: Penguin UK
Release Date : 2018-05-15

The Book Of Why written by Judea Pearl and has been published by Penguin UK this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-15 with Philosophy categories.


The hugely influential book on how the understanding of causality revolutionized science and the world, by the pioneer of artificial intelligence 'Wonderful ... illuminating and fun to read' Daniel Kahneman, Nobel Prize-winner and author of Thinking, Fast and Slow 'Correlation does not imply causation.' For decades, this mantra was invoked by scientists in order to avoid taking positions as to whether one thing caused another, such as smoking and cancer, or carbon dioxide and global warming. But today, that taboo is dead. The causal revolution, sparked by world-renowned computer scientist Judea Pearl and his colleagues, has cut through a century of confusion and placed cause and effect on a firm scientific basis. Now, Pearl and science journalist Dana Mackenzie explain causal thinking to general readers for the first time, showing how it allows us to explore the world that is and the worlds that could have been. It is the essence of human and artificial intelligence. And just as Pearl's discoveries have enabled machines to think better, The Book of Why explains how we too can think better. 'Pearl's accomplishments over the last 30 years have provided the theoretical basis for progress in artificial intelligence and have redefined the term "thinking machine"' Vint Cerf