Pytorch

DOWNLOAD
Download Pytorch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pytorch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Pytorch
DOWNLOAD
Author : Ashish Ranjan Jha
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-05-31
Mastering Pytorch written by Ashish Ranjan Jha and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-31 with Computers categories.
Master advanced techniques and algorithms for machine learning with PyTorch using real-world examples Updated for PyTorch 2.x, including integration with Hugging Face, mobile deployment, diffusion models, and graph neural networks Get With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader Free Key Features Understand how to use PyTorch to build advanced neural network models Get the best from PyTorch by working with Hugging Face, fastai, PyTorch Lightning, PyTorch Geometric, Flask, and Docker Unlock faster training with multiple GPUs and optimize model deployment using efficient inference frameworks Book DescriptionPyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You’ll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You’ll deploy PyTorch models to production, including mobile devices. Finally, you’ll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You’ll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text, vision, and music generation models using PyTorch Build a deep Q-network (DQN) model in PyTorch Deploy PyTorch models on mobile devices (Android and iOS) Become well versed in rapid prototyping using PyTorch with fastai Perform neural architecture search effectively using AutoML Easily interpret machine learning models using Captum Design ResNets, LSTMs, and graph neural networks (GNNs) Create language and vision transformer models using Hugging Face Who this book is for This deep learning with PyTorch book is for data scientists, machine learning engineers, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning models using PyTorch. This book is ideal for those looking to switch from TensorFlow to PyTorch. Working knowledge of deep learning with Python is required.
Deep Learning With Pytorch
DOWNLOAD
Author : Vishnu Subramanian
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-02-23
Deep Learning With Pytorch written by Vishnu Subramanian and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-23 with Computers categories.
Build neural network models in text, vision and advanced analytics using PyTorch Key Features Learn PyTorch for implementing cutting-edge deep learning algorithms. Train your neural networks for higher speed and flexibility and learn how to implement them in various scenarios; Cover various advanced neural network architecture such as ResNet, Inception, DenseNet and more with practical examples; Book Description Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics. This book will get you up and running with one of the most cutting-edge deep learning libraries—PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images. By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease. What you will learn Use PyTorch for GPU-accelerated tensor computations Build custom datasets and data loaders for images and test the models using torchvision and torchtext Build an image classifier by implementing CNN architectures using PyTorch Build systems that do text classification and language modeling using RNN, LSTM, and GRU Learn advanced CNN architectures such as ResNet, Inception, Densenet, and learn how to use them for transfer learning Learn how to mix multiple models for a powerful ensemble model Generate new images using GAN’s and generate artistic images using style transfer Who this book is for This book is for machine learning engineers, data analysts, data scientists interested in deep learning and are looking to explore implementing advanced algorithms in PyTorch. Some knowledge of machine learning is helpful but not a mandatory need. Working knowledge of Python programming is expected.
Natural Language Processing With Pytorch
DOWNLOAD
Author : Delip Rao
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-01-22
Natural Language Processing With Pytorch written by Delip Rao and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-22 with Computers categories.
Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems
Deep Learning With Pytorch
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2023-03-21
Deep Learning With Pytorch written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-21 with Computers categories.
Deep learning is currently the most interesting and powerful machine learning technique. PyTorch is one of the dominant libraries for deep learning in the Python ecosystem and is widely used in research. With PyTorch, you can easily tap into the power of deep learning with just a few lines of code. Many deep learning models are created in PyTorch. Therefore, knowing PyTorch opens the door for you to leverage the power of deep learning. This Ebook is written in the friendly Machine Learning Mastery style that you’re used to, learn exactly how to get started and apply deep learning to your own machine learning projects.
Pytorch Pocket Reference
DOWNLOAD
Author : Joe Papa
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-05-11
Pytorch Pocket Reference written by Joe Papa and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-11 with Computers categories.
This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers. Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network development-from loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, Google Cloud, or Azure and deploy your ML models to mobile and edge devices. Learn basic PyTorch syntax and design patterns Create custom models and data transforms Train and deploy models using a GPU and TPU Train and test a deep learning classifier Accelerate training using optimization and distributed training Access useful PyTorch libraries and the PyTorch ecosystem
Machine Learning With Pytorch And Scikit Learn
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-02-25
Machine Learning With Pytorch And Scikit Learn written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-25 with Computers categories.
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
Introduction To Openai
DOWNLOAD
Author : Gilad James, PhD
language : en
Publisher: Gilad James Mystery School
Release Date :
Introduction To Openai written by Gilad James, PhD and has been published by Gilad James Mystery School this book supported file pdf, txt, epub, kindle and other format this book has been release on with Science categories.
OpenAI is a non-profit organization which aims to advance artificial intelligence (AI) in a way that benefits humanity as a whole. It was founded in 2015 by a group of prominent figures in the tech industry, including Elon Musk and Sam Altman. OpenAI has a collaborative approach, partnering with industry leaders to develop AI in a safe and ethical manner. The organization is focused on developing AI technologies that can be used to tackle global issues such as climate change, poverty, and disease. One of the main goals of OpenAI is to create cutting-edge AI that can be used to solve real-world problems. This is achieved through a combination of research and development, industry partnerships, and open-source tools and frameworks that can be used by developers and researchers around the world. OpenAI is also focused on ensuring that AI technology is developed in a responsible and ethical manner. This includes creating safety mechanisms to prevent AI systems from causing harm, as well as ensuring that AI is designed to benefit society as a whole and not just a small subset of individuals. Ultimately, OpenAI's vision is to create a future where AI is used to solve humanity's biggest challenges, improve the quality of life for all people, and create a more equitable and sustainable world.
Modern Computer Vision With Pytorch
DOWNLOAD
Author : V Kishore Ayyadevara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-06-10
Modern Computer Vision With Pytorch written by V Kishore Ayyadevara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-10 with Computers categories.
The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code files are available on GitHub and can be run on Google Colab Book DescriptionWhether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks. The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion. You’ll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You’ll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you’ll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you’ll learn best practices for deploying a model to production. By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.What you will learn Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks Implement multi-object detection and segmentation Leverage foundation models to perform object detection and segmentation without any training data points Learn best practices for moving a model to production Who this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.
Pytorch Cookbook
DOWNLOAD
Author : Matthew Rosch
language : en
Publisher: GitforGits
Release Date : 2023-10-04
Pytorch Cookbook written by Matthew Rosch and has been published by GitforGits this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-04 with Computers categories.
Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural networks, training, optimization, and deployment strategies chapter by chapter. The first part covers PyTorch basics, data preprocessing, tokenization, and vocabulary. Next, it builds CNN, RNN, Attentional Layers, and Graph Neural Networks. The book emphasizes distributed training, scalability, and multi-GPU training for real-world scenarios. Practical embedded systems, mobile development, and model compression solutions illuminate on-device AI applications. However, the book goes beyond code and algorithms. It also offers hands-on troubleshooting and debugging for end-to-end deep learning development. 'PyTorch Cookbook' covers data collection to deployment errors and provides detailed solutions to overcome them. This book integrates PyTorch with ONNX Runtime, PySyft, Pyro, Deep Graph Library (DGL), Fastai, and Ignite, showing you how to use them for your projects. This book covers real-time inferencing, cluster training, model serving, and cross-platform compatibility. You'll learn to code deep learning architectures, work with neural networks, and manage deep learning development stages. 'PyTorch Cookbook' is a complete manual that will help you become a confident PyTorch developer and a smart Deep Learning engineer. Its clear examples and practical advice make it a must-read for anyone looking to use PyTorch and advance in deep learning. Key Learnings Comprehensive introduction to PyTorch, equipping readers with foundational skills for deep learning. Practical demonstrations of various neural networks, enhancing understanding through hands-on practice. Exploration of Graph Neural Networks (GNN), opening doors to cutting-edge research fields. In-depth insight into PyTorch tools and libraries, expanding capabilities beyond core functions. Step-by-step guidance on distributed training, enabling scalable deep learning and AI projects. Real-world application insights, bridging the gap between theoretical knowledge and practical execution. Focus on mobile and embedded development with PyTorch, leading to on-device AI. Emphasis on error handling and troubleshooting, preparing readers for real-world challenges. Advanced topics like real-time inferencing and model compression, providing future ready skill. Table of Content Introduction to PyTorch 2.0 Deep Learning Building Blocks Convolutional Neural Networks Recurrent Neural Networks Natural Language Processing Graph Neural Networks (GNNs) Working with Popular PyTorch Tools Distributed Training and Scalability Mobile and Embedded Development
Getting Started With Deep Learning For Natural Language Processing
DOWNLOAD
Author : Sunil Patel
language : en
Publisher: BPB Publications
Release Date : 2021-01-13
Getting Started With Deep Learning For Natural Language Processing written by Sunil Patel and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-13 with Computers categories.
Learn how to redesign NLP applications from scratch. KEY FEATURESÊÊ ¥ Get familiar with the basics of any Machine Learning or Deep Learning application. ¥ Understand how does preprocessing work in NLP pipeline. ¥ Use simple PyTorch snippets to create basic building blocks of the network commonly used inÊ NLP.Ê ¥ Learn how to build a complex NLP application. ¥ Get familiar with the advanced embedding technique, Generative network, and Audio signal processing techniques. ÊÊ DESCRIPTIONÊ Natural language processing (NLP) is one of the areas where many Machine Learning and Deep Learning techniques are applied. This book covers wide areas, including the fundamentals of Machine Learning, Understanding and optimizing Hyperparameters, Convolution Neural Networks (CNN), and Recurrent Neural Networks (RNN). This book not only covers the classical concept of text processing but also shares the recent advancements. This book will empower users in designing networks with the least computational and time complexity. This book not only covers basics of Natural Language Processing but also helps in deciphering the logic behind advanced concepts/architecture such as Batch Normalization, Position Embedding, DenseNet, Attention Mechanism, Highway Networks, Transformer models and Siamese Networks. This book also covers recent advancements such as ELMo-BiLM, SkipThought, and Bert. This book also covers practical implementation with step by step explanation of deep learning techniques in Topic Modelling, Text Generation, Named Entity Recognition, Text Summarization, and Language Translation. In addition to this, very advanced and open to research topics such as Generative Adversarial Network and Speech Processing are also covered. WHAT YOU WILL LEARNÊ ¥ Learn how to leveraging GPU for Deep Learning ¥ Learn how to use complex embedding models such as BERT ¥ Get familiar with the common NLP applications. ¥ Learn how to use GANs in NLP ¥ Learn how to process Speech data and implementing it in Speech applications Ê WHO THIS BOOK IS FORÊ This book is a must-read to everyone who wishes to start the career with Machine learning and Deep Learning. This book is also for those who want to use GPU for developing Deep Learning applications. TABLE OF CONTENTSÊÊ 1. Understanding the basics of learning Process 2. Text Processing Techniques 3. Representing Language Mathematically 4. Using RNN for NLP 5. Applying CNN In NLP Tasks 6. Accelerating NLP with Advanced Embeddings 7. Applying Deep Learning to NLP tasks 8. Application of Complex Architectures in NLP 9. Understanding Generative Networks 10. Techniques of Speech Processing 11. The Road Ahead