[PDF] Resource Allocation In Collocated Massive Mimo For 5g And Beyond - eBooks Review

Resource Allocation In Collocated Massive Mimo For 5g And Beyond


Resource Allocation In Collocated Massive Mimo For 5g And Beyond
DOWNLOAD

Download Resource Allocation In Collocated Massive Mimo For 5g And Beyond PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Resource Allocation In Collocated Massive Mimo For 5g And Beyond book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Resource Allocation In Collocated Massive Mimo For 5g And Beyond


Resource Allocation In Collocated Massive Mimo For 5g And Beyond
DOWNLOAD
Author : Maryam Miriestahbanati
language : en
Publisher:
Release Date : 2021

Resource Allocation In Collocated Massive Mimo For 5g And Beyond written by Maryam Miriestahbanati and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Massive multiuser multiple-input multiple-output (MIMO) systems have been recently introduced as a promising technology for the next generation of wireless networks. It has been proven that linear precoders/detectors such as maximum ratio transmitting/maximum ratio combining (MRT/MRC), zero forcing (ZF), and linear minimum mean square error (LMMSE) on the downlink (DL)/uplink (UL) transmission can provide near optimal performance in such systems. Acquiring channel state information (CSI) at the transmitter as well as the receiver is one of the challenges in multiuser massive MIMO that can affect the network performance. Any data transmission in multiuser massive MIMO systems starts with the user transmitting UL pilots. The base station (BS) then uses the MMSE estimation method to accurately estimate the CSI from the pilot sequences. Since the UL and DL channels are reciprocal in time division duplex (TDD) mode, the BS employs the obtained CSI to precode the data symbols prior to DL transmission. The users also need the CSI knowledge to accurately decode the DL signals. Beamforming training (BT) scheme is one of the methods that is proposed in the literature to provide the CSI knowledge for the users. In this scheme, the BS precodes and transmits a pilot sequence to the users such that each user can estimate its effective channel coefficients. Developing an optimal resource distribution method that enhances the system performance is another challenging issue in multiuser massive MIMO. As mentioned earlier, CSI acquisition is one of the requirements of multiuser massive MIMO, and UL pilot transmission is the common method to achieve that. Conventionally, equal powers have been considered for the pilot transmission phase and data transmission phase. However, it can be shown that the performance of the system under this method of power distribution is not optimal. Therefore, to further improve the performance of multiuser massive MIMO technology, especially in cases where the antenna elements are not well separated and the propagational dispersion is low, optimal resource allocation is required. Hence, the main objective of this M.A.Sc. thesis is to develop an optimal resource allocation among pilot and data symbols to maximize the spectral efficiency, assuming different receivers such as MRC, ZF, and LMMSE are employed at the BS. Since the calculation of spectral efficiency using the lower bound on the achievable rate is computationally very intensive, we first obtain closed-form expressions for the achievable UL rate of users, assuming the angular domain in the physical channel model is divided into a finite number of separate directions. An approximate expression for spectral efficiency is then developed using the aforementioned closed-form rates. Finally, we propose a resource allocation scheme in which the pilot power, data power, and training duration are optimally chosen in order to maximize the spectral efficiency in a given total power budget. Extensive simulations are conducted in MATLAB and the results are presented that illustrate the notable improvement in the achievable spectral efficiency through the proposed power allocation scheme. Moreover, the results show that the performance of the proposed method is much superior when the number of channel directions or the number of antennas at BS increases. Furthermore, while the advantage of the proposed method is more notable in the case of ZF and LMMSE receivers, it still outperforms the equal power allocation method for the MRC receiver in terms of spectral efficiency.



Resource Allocation For Max Min Fairness In Multi Cell Massive Mimo


Resource Allocation For Max Min Fairness In Multi Cell Massive Mimo
DOWNLOAD
Author : Trinh van Chien
language : en
Publisher: Linköping University Electronic Press
Release Date : 2018-01-11

Resource Allocation For Max Min Fairness In Multi Cell Massive Mimo written by Trinh van Chien and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-11 with categories.


Massive MIMO (multiple-input multiple-output) is considered as an heir of the multi-user MIMO technology and it has recently gained lots of attention from both academia and industry. By equipping base stations (BSs) with hundreds of antennas, this new technology can provide very large multiplexing gains by serving many users on the same time-frequency resources and thereby bring significant improvements in spectral efficiency (SE) and energy efficiency (EE) over the current wireless networks. The transmit power, pilot training, and spatial transmission resources need to be allocated properly to the users to achieve the highest possible performance. This is called resource allocation and can be formulated as design utility optimization problems. If the resource allocation in Massive MIMO is optimized, the technology can handle the exponential growth in both wireless data traffic and number of wireless devices, which cannot be done by the current cellular network technology. In this thesis, we focus on two resource allocation aspects in Massive MIMO: The first part of the thesis studies if power control and advanced coordinated multipoint (CoMP) techniques are able to bring substantial gains to multi-cell Massive MIMO systems compared to the systems without using CoMP. More specifically, we consider a network topology with no cell boundary where the BSs can collaborate to serve the users in the considered coverage area. We focus on a downlink (DL) scenario in which each BS transmits different data signals to each user. This scenario does not require phase synchronization between BSs and therefore has the same backhaul requirements as conventional Massive MIMO systems, where each user is preassigned to only one BS. The scenario where all BSs are phase synchronized to send the same data is also included for comparison. We solve a total transmit power minimization problem in order to observe how much power Massive MIMO BSs consume to provide the requested quality of service (QoS) of each user. A max-min fairness optimization is also solved to provide every user with the same maximum QoS regardless of the propagation conditions. The second part of the thesis considers a joint pilot design and uplink (UL) power control problem in multi-cell Massive MIMO. The main motivation for this work is that the pilot assignment and pilot power allocation is momentous in Massive MIMO since the BSs are supposed to construct linear detection and precoding vectors from the channel estimates. Pilot contamination between pilot-sharing users leads to more interference during data transmission. The pilot design is more difficult if the pilot signals are reused frequently in space, as in Massive MIMO, which leads to greater pilot contamination effects. Related works have only studied either the pilot assignment or the pilot power control, but not the joint optimization. Furthermore, the pilot assignment is usually formulated as a combinatorial problem leading to prohibitive computational complexity. Therefore, in the second part of this thesis, a new pilot design is proposed to overcome such challenges by treating the pilot signals as continuous optimization variables. We use those pilot signals to solve different max-min fairness optimization problems with either ideal hardware or hardware impairments.



5g And Beyond Wireless Networks


5g And Beyond Wireless Networks
DOWNLOAD
Author : Indrasen Singh
language : en
Publisher: CRC Press
Release Date : 2024-02-26

5g And Beyond Wireless Networks written by Indrasen Singh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-26 with Computers categories.


5G and Beyond Wireless Networks: Technology, Network Deployments, and Materials for Antenna Design offers a comprehensive overview of 5G and beyond 5G wireless networks along with emerging technologies that support the design and development of wireless networks. It also includes discussions on various materials used for practical antenna design which are suitable for 5G, beyond 5G applications, and cell-free massive MIMO systems. The book discusses the latest techniques used in 5G and beyond 5G (B5G) communication, such as non-orthogonal multiple access (NOMA), device-to-device (D2D) communication, 6G ultra-dense O-RAN, rate-splitting multiple access (RSMA), simultaneous wireless information and power transfer (SWIPT), massive multiple input multiple output (mMIMO), and cell-free massive MIMO systems, which are explained in detail for 5G and beyond cellular networks. The description of NOMA and their benefit for 5G and beyond networks is also addressed along with D2D communication for next generation cellular networks. RSMA technique is also explained for 6G communication. Detailed descriptions for the design and development of 5G and beyond networks over various techniques are included. The materials specification to design antenna for 5G application are also given. The role of metalens in designing effective antennas and material specifications for 5G applications is explained in this book. Apart from the above emerging topics, this book also gives ideas about intelligent communication, Internet of Multimedia Things (IOMT), millimeter-wave MIMO-UFMC, and fog computing cloud networks. The last chapter gives details about the legal frameworks for 5G technology for responsible and sustainable deployment. Overall, this book may benefit network design engineers and researchers working in the area of next generation cellular networks. The contents of this book will be helpful for young researchers and master students, and network design engineers who are working in the area of next generation cellular networks.



Resource Allocation And Mimo For 4g And Beyond


Resource Allocation And Mimo For 4g And Beyond
DOWNLOAD
Author : Francisco Rodrigo Porto Cavalcanti
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-10-23

Resource Allocation And Mimo For 4g And Beyond written by Francisco Rodrigo Porto Cavalcanti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-23 with Technology & Engineering categories.


This book will be a comprehensive collection of advanced concepts related to 4th generation wireless communication systems. It will be divided into two main parts: resource allocation and transceiver architectures. These two research areas are at the core of the recent advances experimented by wireless communication systems. Each chapter will cover a relevant, timely, topic with two focuses: a first part which is of tutorial and survey nature, reviews the state of the art in that topic, followed by a more deep treatment including current research topics, case studies and performance analysis.



Ultra Dense Networks For 5g And Beyond


Ultra Dense Networks For 5g And Beyond
DOWNLOAD
Author : Trung Q. Duong
language : en
Publisher: John Wiley & Sons
Release Date : 2019-01-31

Ultra Dense Networks For 5g And Beyond written by Trung Q. Duong and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Technology & Engineering categories.


Offers comprehensive insight into the theory, models, and techniques of ultra-dense networks and applications in 5G and other emerging wireless networks The need for speed—and power—in wireless communications is growing exponentially. Data rates are projected to increase by a factor of ten every five years—and with the emerging Internet of Things (IoT) predicted to wirelessly connect trillions of devices across the globe, future mobile networks (5G) will grind to a halt unless more capacity is created. This book presents new research related to the theory and practice of all aspects of ultra-dense networks, covering recent advances in ultra-dense networks for 5G networks and beyond, including cognitive radio networks, massive multiple-input multiple-output (MIMO), device-to-device (D2D) communications, millimeter-wave communications, and energy harvesting communications. Clear and concise throughout, Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications offers a comprehensive coverage on such topics as network optimization; mobility, handoff control, and interference management; and load balancing schemes and energy saving techniques. It delves into the backhaul traffic aspects in ultra-dense networks and studies transceiver hardware impairments and power consumption models in ultra-dense networks. The book also examines new IoT, smart-grid, and smart-city applications, as well as novel modulation, coding, and waveform designs. One of the first books to focus solely on ultra-dense networks for 5G in a complete presentation Covers advanced architectures, self-organizing protocols, resource allocation, user-base station association, synchronization, and signaling Examines the current state of cell-free massive MIMO, distributed massive MIMO, and heterogeneous small cell architectures Offers network measurements, implementations, and demos Looks at wireless caching techniques, physical layer security, cognitive radio, energy harvesting, and D2D communications in ultra-dense networks Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications is an ideal reference for those who want to design high-speed, high-capacity communications in advanced networks, and will appeal to postgraduate students, researchers, and engineers in the field.



Massive Mimo In 5g Networks Selected Applications


Massive Mimo In 5g Networks Selected Applications
DOWNLOAD
Author : Long Zhao
language : en
Publisher: Springer
Release Date : 2017-12-21

Massive Mimo In 5g Networks Selected Applications written by Long Zhao and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-21 with Technology & Engineering categories.


This SpringerBrief focuses mainly on the basic theory and applications of massive MIMO in 5G networks. The significance of massive MIMO for 5G or future communications is first briefly discussed. Then, the basic theory of massive MIMO technology is comprehensively analyzed, i.e., a variety of 5G scenarios and their improvements are described when massive MIMO is taken into account. Art physical-layer techniques and various networking techniques for interference mitigation and resource scheduling are introduced as well. This SpringerBrief also examines the selected applications of massive MIMO in 5G networks, i.e., massive MIMO-aided millimeter communications and energy transfer. The physical-layer design, multiple access control (MAC) mechanism and networking techniques are discussed for millimeter-wave communications aided by massive MIMO technology. Then, massive MIMO is covered for hybrid information and energy transfer. A downlink precoder and a uplink pilot scheme is proposed for single cell networks, and both non-cooperative and cooperative energy transfer in multi-cell are presented. Communication researchers in the area of MIMO technology, as well as researchers and practitioners working in millimeter communications and energy transfer seeking new research topics, and topic areas with communication system design, centralized and distributed algorithms, will find this brief useful as a reference. Advanced-level students studying communication engineering will also find this book useful as a secondary text.



Cell Free Massive Mimo


Cell Free Massive Mimo
DOWNLOAD
Author : Giovanni Interdonato
language : en
Publisher: Linköping University Electronic Press
Release Date : 2020-09-09

Cell Free Massive Mimo written by Giovanni Interdonato and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-09 with Electronic books categories.


The fifth generation of mobile communication systems (5G) is nowadays a reality. 5G networks are been deployed all over the world, and the first 5G-capable devices (e.g., smartphones, tablets, wearable, etc.) are already commercially available. 5G systems provide unprecedented levels of connectivity and quality of service (QoS) to cope with the incessant growth in the number of connected devices and the huge increase in data-rate demand. Massive MIMO (multiple-input multiple-output) technology plays a key role in 5G systems. The underlying principle of this technology is the use of a large number of co-located antennas at the base station, which coherently transmit/receive signals to/from multiple users. This signal co-processing at multiple antennas leads to manifold benefits: array gain, spatial diversity and spatial user multiplexing. These elements enable to meet the QoS requirements established for the 5G systems. The major bottleneck of massive MIMO systems as well as of any cellular network is the inter-cell interference, which affects significantly the cell-edge users, whose performance is already degraded by the path attenuation. To overcome these limitations and provide uniformly excellent service to all the users we need a more radical approach: we need to challenge the cellular paradigm. In this regard, cell-free massive MIMO constitutes the paradigm shift. In the cell-free paradigm, it is not the base station surrounded by the users, but rather it is each user being surrounded by smaller, simpler, serving base stations referred to as access points (APs). In such a system, each user experiences being in the cell-center, and it does not experience any cell boundaries. Hence, the terminology cell-free. As a result, users are not affected by inter-cell interference, and the path attenuation is significantly reduced due to the presence of many APs in their proximity. This leads to impressive performance. Although appealing from the performance viewpoint, the designing and implementation of such a distributed massive MIMO system is a challenging task, and it is the object of this thesis. More specifically, in this thesis we study: Paper A) The large potential of this promising technology in realistic indoor/outdoor scenarios while also addressing practical deployment issues, such as clock synchronization among APs, and cost-efficient implementations. We provide an extensive description of a cell-free massive MIMO system, emphasizing strengths and weaknesses, and pointing out differences and similarities with existing distributed multiple antenna systems, such as Coordinated MultiPoint (CoMP). Paper B) How to preserve the scalability of the system, by proposing a solution related to data processing, network topology and power control. We consider a realistic scenario where multiple central processing units serve disjoint subsets of APs, and compare the spectral efficiency provided by the proposed scalable framework with the canonical cell-free massive MIMO and CoMP. Paper C) How to improve the spectral efficiency (SE) in the downlink (DL), by devising two distributed precoding schemes, referred to as local partial zero-forcing (ZF) and local protective partial ZF, that provide an adaptable trade-off between interference cancelation and boosting of the desired signal, with no additional front-haul overhead, and that are implementable by APs with very few antennas. We derive closed-form expressions for the achievable SE under the assumption of independent Rayleigh fading channel, channel estimation error and pilot contamination. These closed-form expressions are then used to devise optimal max-min fairness power control. Paper D) How to further improve the SE by letting the user estimate the DL channel from DL pilots, instead of relying solely on the knowledge of the channel statistics. We derive an approximate closed-form expression of the DL SE for conjugate beamforming (CB), and assuming independent Rayleigh fading. This expression accounts for beamformed DL pilots, estimation errors and pilot contamination at both the AP and the user side. We devise a sequential convex approximation algorithm to globally solve the max-min fairness power control optimization problem, and a greedy algorithm for uplink (UL) and DL pilot assignment. The latter consists in jointly selecting the UL and DL pilot pair, for each user, that maximizes the smallest SE in the network. Paper E) A precoding scheme that is more suitable when only the channel statistics are available at the users, referred to as enhanced normalized CB. It consists in normalizing the precoding vector by its squared norm in order to reduce the fluctuations of the effective channel seen at the user, and thereby to boost the channel hardening. The performance achieved by this scheme is compared with the CB scheme with DL training (described in Paper D). Paper F) A maximum-likelihood-based method to estimate the channel statistics in the UL, along with an accompanying pilot transmission scheme, that is particularly useful in line-of-sight operation and in scenarios with resource constraints. Pilots are structurally phase-rotated over different coherence blocks to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the AP when performing the proposed estimation method. The overall conclusion is that cell-free massive MIMO is not a utopia, and a practical, distributed, scalable, high-performance system can be implemented. Today it represents a hot research topic, but tomorrow it might represent a key enabler for beyond-5G technology, as massive MIMO has been for 5G. La quinta generazione dei sistemi radiomobili cellulari (5G) è oggi una realtà. Le reti 5G si stanno diffondendo in tutto il mondo e i dispositivi 5G (ad esempio smartphones, tablets, indossabili, ecc.) sono già disponibili sul mercato. I sistemi 5G garantiscono livelli di connettività e di qualità di servizio senza precedenti, per fronteggiare l’incessante crescita del numero di dispositivi connessi alla rete e della domanda di dati ad alta velocità. La tecnologia Massive MIMO (multiple-input multiple-output) riveste un ruolo fondamentale nei sistemi 5G. Il principio alla base di questa tecnologia è l’impiego di un elevato numero di antenne collocate nella base station (stazione radio base) le quali trasmettono/ricevono segnali, in maniere coerente, a/da più terminali utente. Questo co-processamento del segnale da parte di più antenne apporta molteplici benefici: guadagno di array, diversità spaziale e multiplazione degli utenti nel dominio spaziale. Questi elementi consentono di raggiungere i requisiti di servizio stabiliti per i sistemi 5G. Tuttavia, il limite principale dei sistemi massive MIMO, così come di ogni rete cellulare, è rappresentato dalla interferenza inter-cella (ovvero l’interferenza tra aree di copertura gestite da diverse base stations), la quale riduce in modo significativo le performance degli utenti a bordo cella, già degradate dalle attenuazioni del segnale dovute alla considerevole distanza dalla base station. Per superare queste limitazioni e fornire una qualità del servizio uniformemente eccellente a tutti gli utenti, è necessario un approccio più radicale e guardare oltre il classico paradigma cellulare che caratterizza le attuali architetture di rete. A tal proposito, cell-free massive MIMO (massive MIMO senza celle) costituisce un cambio di paradigma: ogni utente è circondato e servito contemporaneamente da numerose, semplici e di dimensioni ridotte base stations, denominate access points (punti di accesso alla rete). Gli access points cooperano per servire tutti gli utenti nella loro area di copertura congiunta, eliminando l’interferenza inter-cella e il concetto stesso di cella. Non risentendo più dell’effetto “bordo-cella”, gli utenti possono usufruire di qualità di servizio e velocità dati eccellenti. Sebbene attraente dal punto di vista delle performance, l’implementazione di un tale sistema distribuito è una operazione impegnativa ed è oggetto di questa tesi. Piu specificatamente, questa tesi di dottorato tratta: Articolo A) L’enorme potenziale di questa promettente tecnologia in scenari realistici sia indoor che outdoor, proponendo anche delle soluzioni di implementazione flessibili ed a basso costo. Articolo B) Come preservare la scalabilità del sistema, proponendo soluzioni distribuite riguardanti il processamento e la condivisione dei dati, l’architettura di rete e l’allocazione di potenza, ovvero come ottimizzare i livelli di potenza trasmessa dagli access points per ridurre l’interferenza tra utenti e migliorare le performance. Articolo C) Come migliorare l’efficienza spettrale in downlink (da access point verso utente) proponendo due schemi di pre-codifica dei dati di trasmissione, denominati local partial zero-forcing (ZF) e local protective partial ZF, che forniscono un perfetto compromesso tra cancellazione dell’interferenza tra utenti ed amplificazione del segnale desiderato. Articolo D) Come migliorare l’efficienza spettrale in downlink permettendo al terminale utente di stimare le informazioni sulle condizioni istantanee del canale da sequenze pilota, piuttosto che basarsi su informazioni statistiche ed a lungo termine, come convenzionalmente previsto. Articolo E) In alternativa alla soluzione precedente, uno schema di pre-codifica che è più adatto al caso in cui gli utenti hanno a disposizione esclusivamente informazioni statistiche sul canale per poter effettuare la decodifica dei dati. Articolo F) Un metodo per permettere agli access points di stimare, in maniera rapida, le condizioni di canale su base statistica, favorito da uno schema di trasmissione delle sequenze pilota basato su rotazione di fase. Realizzare un sistema cell-free massive MIMO pratico, distribuito, scalabile e performante non è una utopia. Oggi questo concept rappresenta un argomento di ricerca interessante, attraente e stimolante ma in futuro potrebbe costituire un fattore chiave per le tecnologie post-5G, proprio come massive MIMO lo è stato per il 5G. Den femte generationens mobilkommunikationssystem (5G) är numera en verklighet. 5G-nätverk är utplacerade på ett flertal platser världen över och de första 5G-kapabla terminalerna (såsom smarta telefoner, surfplattor, kroppsburna apparater, etc.) är redan kommersiellt tillgängliga. 5G-systemen kan tillhandahålla tidigare oöverträffade nivåer av uppkoppling och servicekvalitet och är designade för en fortsatt oavbruten tillväxt i antalet uppkopplade apparater och ökande datataktskrav. Massiv MIMO-teknologi (eng: multiple-input multiple-output) spelar en nyckelroll i dagens 5G-system. Principen bakom denna teknik är användningen av ett stort antal samlokaliserade antenner vid basstationen, där alla antennerna sänder och tar emot signaler faskoherent till och från flera användare. Gemensam signalbehandling av många antennsignaler ger ett flertal fördelar, såsom hög riktverkan via lobformning, vilket leder till högre datatakter samt möjliggör att flera användare utnyttjar samma radioresurser via rumslig användarmultiplexering. Eftersom en signal kan gå genom flera olika, möjligen oberoende kanaler, så utsätts den för flera olika förändringar samtidigt. Denna mångfald ökar kvaliteten på signalen vid mottagaren och förbättrar radiolänkens robusthet och tillförlitlighet. Detta gör det möjligt att uppfylla de höga kraven på servicekvalitet som fastställts för 5G-systemen. Den största begränsningen för massiva MIMO-system såväl som för alla cellulära mobilnätverk, är störningar från andra celler som påverkar användare på cellkanten väsentligt, vars prestanda redan begränsas av sträckdämpningen på radiokanalen. För att övervinna dessa begränsningar och för att kunna tillhandahålla samma utmärkta servicekvalitet till alla användare behöver vi ett mer radikalt angreppssätt: vi måste utmana cellparadigmet. I detta avseende utgör cellfri massiv-MIMO teknik ett paradigmskifte. I cellfri massive-MIMO är utgångspunkten inte att basstationen är omgiven av användare som den betjänar, utan snarare att varje användare omges av basstationer som de betjänas av. Dessa basstationer, ofta mindre och enklare, kallas accesspunkter (AP). I ett sådant system upplever varje användare att den befinner sig i centrum av systemet och ingen användare upplever några cellgränser. Därav terminologin cellfri. Som ett resultat av detta påverkas inte användarna av inter-cellstörningar och sträckdämpningen reduceras kraftigt på grund av närvaron av många accesspunkter i varje användares närhet. Detta leder till imponerande prestanda. Även om det är tilltalande ur ett prestandaperspektiv så är utformningen och implementeringen av ett sådant distribuerat massivt MIMO-system en utmanande uppgift, och det är syftet med denna avhandling att studera detta. Mer specifikt studerar vi i denna avhandling: A) den mycket stora potentialen med denna teknik i realistiska inomhus- såväl som utomhusscenarier, samt hur man hanterar praktiska implementeringsproblem, såsom klocksynkronisering bland accesspunkter och kostnadseffektiva implementeringar; B) hur man ska uppnå skalbarhet i systemet genom att föreslå lösningar relaterade till databehandling, nätverkstopologi och effektkontroll; C) hur man ökar datahastigheten i nedlänken med hjälp av två nyutvecklade distribuerade överföringsmetoder som tillhandahåller en avvägning mellan störningsundertryckning och förstärkning av önskade signaler, utan att öka mängden intern signalering till de distribuerade accesspunkterna, och som kan implementeras i accesspunkter med mycket få antenner; D) hur man kan förbättra prestandan ytterligare genom att låta användaren estimera nedlänkskanalen med hjälp av nedlänkspiloter, istället för att bara förlita sig på kunskap om kanalstatistik; E) en överföringsmetod för nedlänk som är mer lämpligt när endast kanalstatistiken är tillgänglig för användarna. Prestandan som uppnås genom detta schema jämförs med en utökad variant av den nedlänk-pilotbaserade metoden (beskrivet i föregående punkt); F) en metod för att uppskatta kanalstatistiken i upplänken, samt en åtföljande pilotsändningsmetod, som är särskilt användbart vid direktvägsutbredning (line-of-sight) och i scenarier med resursbegränsningar. Den övergripande slutsatsen är att cellfri massiv MIMO inte är en utopi, och att ett distribuerat, skalbart, samt högpresterande system kan implementeras praktiskt. Idag representerar detta ett hett forskningsämne, men snart kan det visa sig vara en viktig möjliggörare för teknik bortom dagens system, på samma sätt som centraliserad massiv MIMO har varit för de nya 5G-systemen.



Resource Allocation And Transmission Control With Massive Mimo Beamforming


Resource Allocation And Transmission Control With Massive Mimo Beamforming
DOWNLOAD
Author : Son Dinh
language : en
Publisher:
Release Date : 2022

Resource Allocation And Transmission Control With Massive Mimo Beamforming written by Son Dinh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Dynamic networks categories.


Millimeter wave (mmWave) communications and massive multiple-input multiple-output (MMIMO) are the key technologies for next-generation (5G and beyond) mobile networks to solve spectrum scarcity problem and meet the demands of fast-growing mobile data traffic. The main goal of this research is to solve the joint optimization problem of transmission scheduling, and beam power control in MMIMO under various network scenarios. First, we investigate the use of the two techniques in a one-hop network containing a single base station (BS) serving multiple mobile users (MUs). Then, we exploit non-orthogonal multiple access (NOMA) radio technologies to enable a macrocell network and multiple cognitive small cells to cooperate in dynamic spectrum sharing. We extend the frameworks to cooperate in a Cloud Radio Access Network (Cloud-RAN) in which both front-haul and wireless access links are empowered with mmWave and MMIMO techniques. Finally, we consider a wireless mesh network, which is composed of MUs, mesh relay nodes and BSs. The main challenges of MMIMO beam-forming is to determine the signal amplitude and throughput of multiple MMIMO beams for better network performance. The problems are addressed under time-varying network environment, in which the network may have heterogeneous user traffic demands or experience different channel conditions. In addition, these statistics of users' packet arrivals and channel conditions may not be known a priori and varies over time. To address the problems, a stochastic model to capture network dynamics is developed. We cast the MMIMO beam power allocation as a dynamic stochastic optimization problem and formulate it as a Markov Decision Process (MDP). Several reinforcement learning algorithms is designed to minimize the expected data delivery latency and packet loss for a long-term performance, without prior knowledge of network state transition probabilities and traffic arrival statistics. By leveraging the structure of underlying problem, we will explore different techniques to reduce the algorithm complexity and improve the scalability. We will evaluate the performance of the proposed algorithms using analysis and simulations, and compare its performance with the state-of the-art solutions.



Mmwave Massive Mimo


Mmwave Massive Mimo
DOWNLOAD
Author : Shahid Mumtaz
language : en
Publisher: Academic Press
Release Date : 2016-12-02

Mmwave Massive Mimo written by Shahid Mumtaz and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-02 with Technology & Engineering categories.


mmWave Massive MIMO: A Paradigm for 5G is the first book of its kind to hinge together related discussions on mmWave and Massive MIMO under the umbrella of 5G networks. New networking scenarios are identified, along with fundamental design requirements for mmWave Massive MIMO networks from an architectural and practical perspective. Working towards final deployment, this book updates the research community on the current mmWave Massive MIMO roadmap, taking into account the future emerging technologies emanating from 3GPP/IEEE. The book's editors draw on their vast experience in international research on the forefront of the mmWave Massive MIMO research arena and standardization. This book aims to talk openly about the topic, and will serve as a useful reference not only for postgraduates students to learn more on this evolving field, but also as inspiration for mobile communication researchers who want to make further innovative strides in the field to mark their legacy in the 5G arena. Contains tutorials on the basics of mmWave and Massive MIMO Identifies new 5G networking scenarios, along with design requirements from an architectural and practical perspective Details the latest updates on the evolution of the mmWave Massive MIMO roadmap, considering future emerging technologies emanating from 3GPP/IEEE Includes contributions from leading experts in the field in modeling and prototype design for mmWave Massive MIMO design Presents an ideal reference that not only helps postgraduate students learn more in this evolving field, but also inspires mobile communication researchers towards further innovation



Power Control For Multi Cell Massive Mimo


Power Control For Multi Cell Massive Mimo
DOWNLOAD
Author : Amin Ghazanfari
language : en
Publisher: Linköping University Electronic Press
Release Date : 2019-10-07

Power Control For Multi Cell Massive Mimo written by Amin Ghazanfari and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-07 with categories.


The cellular network operators have witnessed significant growth in data traffic in the past few decades. This growth occurs due to the increases in the number of connected mobile devices, and further, the emerging mobile applications developed for rendering video-based on-demand services. As the frequency bandwidth for cellular communication is limited, significant effort was dedicated to improve the utilization of the available spectrum and increase the system performance via new technologies. For example, 3G and 4G networks were designed to facilitate high data traffic in cellular networks in past decades. Nevertheless, there is a necessity for new cellular network technologies to accommodate the ever-growing data traffic demand. 5G is behind the corner to deal with the tremendous data traffic requirements that will appear in cellular networks in the next decade. Massive MIMO (multiple-input-multi-output) is one of the backbone technologies in 5G networks. Massive MIMO originated from the concept of multi-user MIMO. It consists of base stations (BSs) implemented with a large number of antennas to increase the signal strengths via adaptive beamforming and concurrently serving many users on the same time-frequency blocks. As an outcome of using Massive MIMO technology, there is a notable enhancement of both sum spectral efficiency (SE) and energy efficiency (EE) in comparison with conventional MIMO based cellular networks. Resource allocation is an imperative factor to exploit the specified gains of Massive MIMO. It corresponds to properly allocating resources in the time, frequency, space, and power domains for cellular communication. Power control is one of the resource allocation methods to deliver high spectral and energy efficiency of Massive MIMO networks. Power control refers to a scheme that allocates transmit powers to the data transmitters such that the system maximizes some desirable performance metric. In the first part of this thesis, we investigate reusing the resources of a Massive MIMO system, for direct communication of some specific user pairs known as device-to-device (D2D) underlay communication. D2D underlay can conceivably increase the SE of traditional Massive MIMO systems by enabling more simultaneous transmissions on the same frequencies. Nevertheless, it adds additional mutual interference to the network. Consequently, power control is even more essential in this scenario in comparison with conventional Massive MIMO systems to limit the interference that is caused between the cellular network and the D2D communication, thereby enabling their coexistence. In this part, we propose a novel pilot transmission scheme for D2D users to limit the interference to the channel estimation phase of cellular users in comparison with the case of sharing pilot sequences for cellular and D2D users. We also introduce a novel pilot and data power control scheme for D2D underlaid Massive MIMO systems. This method aims at assuring that D2D communication enhances the SE of the network in comparison with conventional Massive MIMO systems. In the second part of this thesis, we propose a novel power control approach for multi-cell Massive MIMO systems. The new power control approach solves the scalability issue of two well-known power control schemes frequently used in the Massive MIMO literature, which are based on the network-wide max-min and proportional fairness performance metrics. We first explain the scalability issue of these existing approaches. Additionally, we provide mathematical proof for the scalability of our proposed method. Our scheme aims at maximizing the geometric mean of the per-cell max-min SE. To solve this optimization problem, we prove that it can be rewritten in a convex form and then be solved using standard optimization solvers.