Separation Of Variables For Partial Differential Equations

DOWNLOAD
Download Separation Of Variables For Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Separation Of Variables For Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Essential Mathematics For The Physical Sciences Volume 1
DOWNLOAD
Author : Brett Borden
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2017-10-31
Essential Mathematics For The Physical Sciences Volume 1 written by Brett Borden and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-31 with Science categories.
Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus asound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations (PDEs) and the special functions introduced. Solving PDEs can't be done, however, outside of the context in which they apply to physical systems. The solutions to PDEs must conform to boundary conditions, a set of additional constraints in space or time to be satisfied at the boundaries of the system, that small part of the universe under study. The first volume is devoted to homogeneous boundary-value problems (BVPs), homogeneous implying a system lacking a forcing function, or source function. The second volume takes up (in addition to other topics) inhomogeneous problems where, in addition to the intrinsic PDE governing a physical field, source functions are an essential part of the system. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well. It is based on the assumption that it follows a math review course, and was designed to coincide with the second quarter of student study, which is dominated by BVPs but also requires an understanding of special functions and Fourier analysis.
Mathematical Physics With Partial Differential Equations
DOWNLOAD
Author : James Kirkwood
language : en
Publisher: Academic Press
Release Date : 2012-01-20
Mathematical Physics With Partial Differential Equations written by James Kirkwood and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-20 with Mathematics categories.
Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.
Symmetry And Separation Of Variables
DOWNLOAD
Author : Willard Miller
language : en
Publisher: Cambridge University Press
Release Date : 1984-12-28
Symmetry And Separation Of Variables written by Willard Miller and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984-12-28 with Mathematics categories.
Originally published in 1977, this volume is concerned with the relationship between symmetries of a linear second-order partial differential equation of mathematical physics, the coordinate systems in which the equation admits solutions via separation of variables, and the properties of the special functions that arise in this manner. Some group-theoretic twists in the ancient method of separation of variables that can be used to provide a foundation for much of special function theory are shown. In particular, it is shown explicitly that all special functions that arise via separation of variables in the equations of mathematical physics can be studied using group theory.
Linear Partial Differential Equations For Scientists And Engineers
DOWNLOAD
Author : Tyn Myint-U
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-05
Linear Partial Differential Equations For Scientists And Engineers written by Tyn Myint-U and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-05 with Mathematics categories.
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.
Partial Differential Equations
DOWNLOAD
Author : Thomas Hillen
language : en
Publisher: John Wiley & Sons
Release Date : 2014-08-21
Partial Differential Equations written by Thomas Hillen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-21 with Mathematics categories.
Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.
Applied Partial Differential Equations
DOWNLOAD
Author : J. David Logan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Applied Partial Differential Equations written by J. David Logan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.
Introduction To Partial Differential Equations
DOWNLOAD
Author : Peter J. Olver
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-08
Introduction To Partial Differential Equations written by Peter J. Olver and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-08 with Mathematics categories.
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.
Introduction To Partial Differential Equations With Applications
DOWNLOAD
Author : E. C. Zachmanoglou
language : en
Publisher: Courier Corporation
Release Date : 1986-01-01
Introduction To Partial Differential Equations With Applications written by E. C. Zachmanoglou and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986-01-01 with Mathematics categories.
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.
Fourier Analysis And Its Applications
DOWNLOAD
Author : G. B. Folland
language : en
Publisher: American Mathematical Soc.
Release Date : 2009
Fourier Analysis And Its Applications written by G. B. Folland and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
Partial Differential Equations In Action
DOWNLOAD
Author : Sandro Salsa
language : en
Publisher: Springer
Release Date : 2015-04-24
Partial Differential Equations In Action written by Sandro Salsa and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-24 with Mathematics categories.
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.