Smart Data

DOWNLOAD
Download Smart Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Smart Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Smart
DOWNLOAD
Author : John W. Foreman
language : en
Publisher: John Wiley & Sons
Release Date : 2013-11-12
Data Smart written by John W. Foreman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-12 with Computers categories.
Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
Public Transport Planning With Smart Card Data
DOWNLOAD
Author : Fumitaka Kurauchi
language : en
Publisher: CRC Press
Release Date : 2017-02-17
Public Transport Planning With Smart Card Data written by Fumitaka Kurauchi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-17 with Political Science categories.
Collecting fares through "smart cards" is becoming standard in most advanced public transport networks of major cities around the world. Travellers value their convenience and operators the reduced money handling fees. Electronic tickets also make it easier to integrate fare systems, to create complex time and space differentiated fare systems, and to provide incentives to specific target groups. A less-utilised benefit is the data collected through smart cards. Records, even if anonymous, provide for a much better understanding of passengers’ travel behaviour as current literature shows. This information can also be used for better service planning. Public Transport Planning with Smart Card Data handles three major topics: how passenger behaviour can be estimated using smart card data, how smart card data can be combined with other trip databases, and how the public transport service level can be better evaluated if smart card data is available. The book discusses theory as well as applications from cities around the world and will be of interest to researchers and practitioners alike who are interested in the state-of-the-art as well as future perspectives that smart card data will bring.
Smart Cities Big Data Prediction Methods And Applications
DOWNLOAD
Author : Hui Liu
language : en
Publisher: Springer
Release Date : 2021-03-26
Smart Cities Big Data Prediction Methods And Applications written by Hui Liu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-26 with Computers categories.
Smart Cities: Big Data Prediction Methods and Applications is the first reference to provide a comprehensive overview of smart cities with the latest big data predicting techniques. This timely book discusses big data forecasting for smart cities. It introduces big data forecasting techniques for the key aspects (e.g., traffic, environment, building energy, green grid, etc.) of smart cities, and explores three key areas that can be improved using big data prediction: grid energy, road traffic networks and environmental health in smart cities. The big data prediction methods proposed in this book are highly significant in terms of the planning, construction, management, control and development of green and smart cities. Including numerous case studies to explain each method and model, this easy-to-understand book appeals to scientists, engineers, college students, postgraduates, teachers and managers from various fields of artificial intelligence, smart cities, smart grid, intelligent traffic systems, intelligent environments and big data computing.
Smartdata
DOWNLOAD
Author : Inman Harvey
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-23
Smartdata written by Inman Harvey and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-23 with Computers categories.
SmartData empowers personal data by wrapping it in a cloak of intelligence such that it now becomes the individual’s virtual proxy in cyberspace. No longer will personal data be shared or stored in the cloud as merely data, encrypted or otherwise; it will now be stored and shared as a constituent of the binary string specifying the entire SmartData agent. This agent proactively builds-in privacy, security and user preferences, right from the outset, not as an afterthought. SmartData: Privacy Meets Evolutionary Robotics includes the advances made in the technology of simulating virtual worlds, together with the ideas emerging from fields of evolutionary robotics and embodied cognition within a framework of dynamical systems as an approach toward this ultimate goal. The book brings together top researchers in the field and addresses current personal data privacy challenges in the online-world.
Retracted Book Smart Grids And Big Data Analytics For Smart Cities
DOWNLOAD
Author : Chun Sing Lai
language : en
Publisher: Springer Nature
Release Date : 2020-10-31
Retracted Book Smart Grids And Big Data Analytics For Smart Cities written by Chun Sing Lai and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-31 with Technology & Engineering categories.
This book provides a comprehensive introduction to different elements of smart city infrastructure - smart energy, smart water, smart health, and smart transportation - and how they work independently and together. Theoretical development and practical applications are presented, along with related standards, recommended practices, and professional guidelines. Throughout the book, diagrams and case studies are provided that demonstrate the systems presented, and extensive use of scenarios helps readers better grasp how smart grids, the Internet of Things, big data analytics, and trading models can improve road safety, healthcare, smart water management, and a low-carbon economy. A must-read for practicing engineers, consultants, regulators, utility operators, and environmentalists involved in smart city development, the book will also appeal to city planners and designers, as well as upper-level undergraduate and graduate students studying energy, environmental science, technology, economics, signal processing, information science, and power engineering.
Artificial Intelligence And Big Data Analytics For Smart Healthcare
DOWNLOAD
Author : Miltiadis Lytras
language : en
Publisher: Academic Press
Release Date : 2021-10-22
Artificial Intelligence And Big Data Analytics For Smart Healthcare written by Miltiadis Lytras and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-22 with Medical categories.
Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers
Applied Machine Learning For Smart Data Analysis
DOWNLOAD
Author : Nilanjan Dey
language : en
Publisher: CRC Press
Release Date : 2019-05-20
Applied Machine Learning For Smart Data Analysis written by Nilanjan Dey and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.
The book focuses on how machine learning and the Internet of Things (IoT) has empowered the advancement of information driven arrangements including key concepts and advancements. Ontologies that are used in heterogeneous IoT environments have been discussed including interpretation, context awareness, analyzing various data sources, machine learning algorithms and intelligent services and applications. Further, it includes unsupervised and semi-supervised machine learning techniques with study of semantic analysis and thorough analysis of reviews. Divided into sections such as machine learning, security, IoT and data mining, the concepts are explained with practical implementation including results. Key Features Follows an algorithmic approach for data analysis in machine learning Introduces machine learning methods in applications Address the emerging issues in computing such as deep learning, machine learning, Internet of Things and data analytics Focuses on machine learning techniques namely unsupervised and semi-supervised for unseen and seen data sets Case studies are covered relating to human health, transportation and Internet applications
Smart Meter Data Analytics
DOWNLOAD
Author : Yi Wang
language : en
Publisher: Springer Nature
Release Date : 2020-02-24
Smart Meter Data Analytics written by Yi Wang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-24 with Business & Economics categories.
This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems.
Big Data Preprocessing
DOWNLOAD
Author : Julián Luengo
language : en
Publisher: Springer Nature
Release Date : 2020-03-16
Big Data Preprocessing written by Julián Luengo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-16 with Computers categories.
This book offers a comprehensible overview of Big Data Preprocessing, which includes a formal description of each problem. It also focuses on the most relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems. This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and to achieve Smart Data the preprocessing is a key step, where the imperfections, integration tasks and other processes are carried out to eliminate superfluous information. The authors present the concept of Smart Data through data preprocessing in Big Data scenarios and connect it with the emerging paradigms of IoT and edge computing, where the end points generate Smart Data without completely relying on the cloud. Finally, this book provides some novel areas of study that are gathering a deeper attention on the Big Data preprocessing. Specifically, it considers the relation with Deep Learning (as of a technique that also relies in large volumes of data), the difficulty of finding the appropriate selection and concatenation of preprocessing techniques applied and some other open problems. Practitioners and data scientists who work in this field, and want to introduce themselves to preprocessing in large data volume scenarios will want to purchase this book. Researchers that work in this field, who want to know which algorithms are currently implemented to help their investigations, may also be interested in this book.
Machine Learning For Environmental Monitoring In Wireless Sensor Networks
DOWNLOAD
Author : Mahalle, Parikshit N.
language : en
Publisher: IGI Global
Release Date : 2024-09-23
Machine Learning For Environmental Monitoring In Wireless Sensor Networks written by Mahalle, Parikshit N. and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-23 with Technology & Engineering categories.
Today, data fuels everything we do in a highly connected world. However, traditional environmental monitoring methods often fail to provide timely and accurate data for effective decision-making in today's rapidly changing ecosystems. The reliance on manual data collection and outdated technologies results in gaps in data coverage, making it challenging to detect and respond to environmental changes in real time. Additionally, integration between monitoring systems and advanced data analysis tools is necessary to derive actionable insights from collected data. As a result, environmental managers and policymakers face significant challenges in effectively monitoring, managing, and conserving natural resources in a rapidly evolving environment. Machine Learning for Environmental Monitoring in Wireless Sensor Networks offers a comprehensive solution to the limitations of traditional environmental monitoring methods. By harnessing the power of Wireless Sensor Networks (WSNs) and advanced machine learning algorithms, this book presents a novel approach to ecological monitoring that enables real-time, high-resolution data collection and analysis. By integrating WSNs and machine learning, environmental stakeholders can gain deeper insights into complex ecological processes, allowing for more informed decision-making and proactive management of natural resources.