[PDF] Stochastic Partial Differential Equations Second Edition - eBooks Review

Stochastic Partial Differential Equations Second Edition


Stochastic Partial Differential Equations Second Edition
DOWNLOAD

Download Stochastic Partial Differential Equations Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Partial Differential Equations Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Stochastic Partial Differential Equations Second Edition


Stochastic Partial Differential Equations Second Edition
DOWNLOAD
Author : Pao-Liu Chow
language : en
Publisher: CRC Press
Release Date : 2014-12-10

Stochastic Partial Differential Equations Second Edition written by Pao-Liu Chow and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-10 with Mathematics categories.


Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Lévy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and improves the presentation of material. New to the Second Edition Two sections on the Lévy type of stochastic integrals and the related stochastic differential equations in finite dimensions Discussions of Poisson random fields and related stochastic integrals, the solution of a stochastic heat equation with Poisson noise, and mild solutions to linear and nonlinear parabolic equations with Poisson noises Two sections on linear and semilinear wave equations driven by the Poisson type of noises Treatment of the Poisson stochastic integral in a Hilbert space and mild solutions of stochastic evolutions with Poisson noises Revised proofs and new theorems, such as explosive solutions of stochastic reaction diffusion equations Additional applications of stochastic PDEs to population biology and finance Updated section on parabolic equations and related elliptic problems in Gauss–Sobolev spaces The book covers basic theory as well as computational and analytical techniques to solve physical, biological, and financial problems. It first presents classical concrete problems before proceeding to a unified theory of stochastic evolution equations and describing applications, such as turbulence in fluid dynamics, a spatial population growth model in a random environment, and a stochastic model in bond market theory. The author also explores the connection of stochastic PDEs to infinite-dimensional stochastic analysis.



Stochastic Partial Differential Equations


Stochastic Partial Differential Equations
DOWNLOAD
Author : Helge Holden
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-08

Stochastic Partial Differential Equations written by Helge Holden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-08 with Mathematics categories.


This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th,~se SPDEs explicitly, or at least provide algorithms or approximations for the solutions.



Backward Stochastic Differential Equations


Backward Stochastic Differential Equations
DOWNLOAD
Author : Jianfeng Zhang
language : en
Publisher: Springer
Release Date : 2017-08-22

Backward Stochastic Differential Equations written by Jianfeng Zhang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-22 with Mathematics categories.


This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.



Stochastic Partial Differential Equations


Stochastic Partial Differential Equations
DOWNLOAD
Author : Helge Holden
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-12-01

Stochastic Partial Differential Equations written by Helge Holden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-01 with Mathematics categories.


The first edition of Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach, gave a comprehensive introduction to SPDEs. In this, the second edition, the authors build on the theory of SPDEs driven by space-time Brownian motion, or more generally, space-time Lévy process noise. Applications of the theory are emphasized throughout. The stochastic pressure equation for fluid flow in porous media is treated, as are applications to finance. Graduate students in pure and applied mathematics as well as researchers in SPDEs, physics, and engineering will find this introduction indispensible. Useful exercises are collected at the end of each chapter.



Stochastic Partial Differential Equations


Stochastic Partial Differential Equations
DOWNLOAD
Author : Pao-Liu Chow
language : en
Publisher: CRC Press
Release Date : 2007-03-19

Stochastic Partial Differential Equations written by Pao-Liu Chow and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-03-19 with Mathematics categories.


As a relatively new area in mathematics, stochastic partial differential equations (PDEs) are still at a tender age and have not yet received much attention in the mathematical community. Filling the void of an introductory text in the field, Stochastic Partial Differential Equations introduces PDEs to students familiar with basic probability theory and Itô's equations, highlighting several computational and analytical techniques. Without assuming specific knowledge of PDEs, the text includes many challenging problems in stochastic analysis and treats stochastic PDEs in a practical way. The author first brings the subject back to its root in classical concrete problems. He then discusses a unified theory of stochastic evolution equations and describes a few applied problems, including the random vibration of a nonlinear elastic beam and invariant measures for stochastic Navier-Stokes equations. The book concludes by pointing out the connection of stochastic PDEs to infinite-dimensional stochastic analysis. By thoroughly covering the concepts and applications of stochastic PDEs at an introductory level, this text provides a guide to current research topics and lays the groundwork for further study.



Stochastic Integration And Differential Equations


Stochastic Integration And Differential Equations
DOWNLOAD
Author : Philip E. Protter
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-03-04

Stochastic Integration And Differential Equations written by Philip E. Protter and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-03-04 with Mathematics categories.


It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.



A Minicourse On Stochastic Partial Differential Equations


A Minicourse On Stochastic Partial Differential Equations
DOWNLOAD
Author : Robert C. Dalang
language : en
Publisher: Springer Science & Business Media
Release Date : 2009

A Minicourse On Stochastic Partial Differential Equations written by Robert C. Dalang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.



Stochastic Partial Differential Equations


Stochastic Partial Differential Equations
DOWNLOAD
Author : Sergey V. Lototsky
language : en
Publisher: Springer
Release Date : 2017-07-06

Stochastic Partial Differential Equations written by Sergey V. Lototsky and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-06 with Mathematics categories.


Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.



Stochastic Differential Equations And Applications


Stochastic Differential Equations And Applications
DOWNLOAD
Author : Avner Friedman
language : en
Publisher: Courier Corporation
Release Date : 2012-08-28

Stochastic Differential Equations And Applications written by Avner Friedman and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-28 with Mathematics categories.


This text develops the theory of systems of stochastic differential equations, and it presents applications in probability, partial differential equations, and stochastic control problems. Originally published in two volumes, it combines a book of basic theory and selected topics with a book of applications. The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic estimates for solutions. The section concludes with a look at recurrent and transient solutions. Volume 2 begins with an overview of auxiliary results in partial differential equations, followed by chapters on nonattainability, stability and spiraling of solutions; the Dirichlet problem for degenerate elliptic equations; small random perturbations of dynamical systems; and fundamental solutions of degenerate parabolic equations. Final chapters examine stopping time problems and stochastic games and stochastic differential games. Problems appear at the end of each chapter, and a familiarity with elementary probability is the sole prerequisite.



Numerical Treatment Of Partial Differential Equations


Numerical Treatment Of Partial Differential Equations
DOWNLOAD
Author : Christian Grossmann
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-11

Numerical Treatment Of Partial Differential Equations written by Christian Grossmann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-11 with Mathematics categories.


This book deals with discretization techniques for partial differential equations of elliptic, parabolic and hyperbolic type. It provides an introduction to the main principles of discretization and gives a presentation of the ideas and analysis of advanced numerical methods in the area. The book is mainly dedicated to finite element methods, but it also discusses difference methods and finite volume techniques. Coverage offers analytical tools, properties of discretization techniques and hints to algorithmic aspects. It also guides readers to current developments in research.