Stochastic Simulation Optimization An Optimal Computing Budget Allocation

DOWNLOAD
Download Stochastic Simulation Optimization An Optimal Computing Budget Allocation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Simulation Optimization An Optimal Computing Budget Allocation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Stochastic Simulation Optimization
DOWNLOAD
Author : Chun-hung Chen
language : en
Publisher: World Scientific
Release Date : 2011
Stochastic Simulation Optimization written by Chun-hung Chen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.
With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.
Stochastic Simulation Optimization
DOWNLOAD
Author : Chun-hung Chen
language : en
Publisher: World Scientific
Release Date : 2010
Stochastic Simulation Optimization written by Chun-hung Chen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Business & Economics categories.
With the advance of new computing technology, simulation is becoming very popular for designing large, complex, and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. This book addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives.Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design, and rare-event simulation.
Handbook Of Simulation Optimization
DOWNLOAD
Author : Michael C Fu
language : en
Publisher: Springer
Release Date : 2014-11-13
Handbook Of Simulation Optimization written by Michael C Fu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-13 with Business & Economics categories.
The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.
Stochastic Simulation Optimization For Discrete Event Systems
DOWNLOAD
Author : Chun-Hung Chen
language : en
Publisher: World Scientific
Release Date : 2013
Stochastic Simulation Optimization For Discrete Event Systems written by Chun-Hung Chen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.
Discrete event systems (DES) have become pervasive in our daily lives. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling these stochastic simulations has long been a hard nut to crack. The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.
Uncertainty Management In Simulation Optimization Of Complex Systems
DOWNLOAD
Author : Gabriella Dellino
language : en
Publisher: Springer
Release Date : 2015-06-29
Uncertainty Management In Simulation Optimization Of Complex Systems written by Gabriella Dellino and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-29 with Business & Economics categories.
This book aims at illustrating strategies to account for uncertainty in complex systems described by computer simulations. When optimizing the performances of these systems, accounting or neglecting uncertainty may lead to completely different results; therefore, uncertainty management is a major issues in simulation-optimization. Because of its wide field of applications, simulation-optimization issues have been addressed by different communities with different methods, and from slightly different perspectives. Alternative approaches have been developed, also depending on the application context, without any well-established method clearly outperforming the others. This editorial project brings together — as chapter contributors — researchers from different (though interrelated) areas; namely, statistical methods, experimental design, stochastic programming, global optimization, metamodeling, and design and analysis of computer simulation experiments. Editors’ goal is to take advantage of such a multidisciplinary environment, to offer to the readers a much deeper understanding of the commonalities and differences of the various approaches to simulation-based optimization, especially in uncertain environments. Editors aim to offer a bibliographic reference on the topic, enabling interested readers to learn about the state-of-the-art in this research area, also accounting for potential real-world applications to improve also the state-of-the-practice. Besides researchers and scientists of the field, the primary audience for the proposed book includes PhD students, academic teachers, as well as practitioners and professionals. Each of these categories of potential readers present adequate channels for marketing actions, e.g. scientific, academic or professional societies, internet-based communities, and authors or buyers of related publications.
Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-04-25
Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-25 with Mathematics categories.
REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
The Elements Of Joint Learning And Optimization In Operations Management
DOWNLOAD
Author : Xi Chen
language : en
Publisher: Springer Nature
Release Date : 2022-09-20
The Elements Of Joint Learning And Optimization In Operations Management written by Xi Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-20 with Business & Economics categories.
This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.
Women In Industrial And Systems Engineering
DOWNLOAD
Author : Alice E. Smith
language : en
Publisher: Springer Nature
Release Date : 2019-09-13
Women In Industrial And Systems Engineering written by Alice E. Smith and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-13 with Technology & Engineering categories.
This book presents a diversity of innovative and impactful research in the field of industrial and systems engineering (ISE) led by women investigators. After a Foreword by Margaret L. Brandeau, an eminent woman scholar in the field, the book is divided into the following sections: Analytics, Education, Health, Logistics, and Production. Also included is a comprehensive biography on the historic luminary of industrial engineering, Lillian Moeller Gilbreth. Each chapter presents an opportunity to learn about the impact of the field of industrial and systems engineering and women’s important contributions to it. Topics range from big data analysis, to improving cancer treatment, to sustainability in product design, to teamwork in engineering education. A total of 24 topics touch on many of the challenges facing the world today and these solutions by women researchers are valuable for their technical innovation and excellence and their non-traditional perspective. Found within each author’s biography are their motivations for entering the field and how they view their contributions, providing inspiration and guidance to those entering industrial engineering.
Advances In Global Optimization
DOWNLOAD
Author : David Gao
language : en
Publisher: Springer
Release Date : 2014-11-11
Advances In Global Optimization written by David Gao and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-11 with Mathematics categories.
This proceedings volume addresses advances in global optimization—a multidisciplinary research field that deals with the analysis, characterization and computation of global minima and/or maxima of nonlinear, non-convex and nonsmooth functions in continuous or discrete forms. The volume contains selected papers from the third biannual World Congress on Global Optimization in Engineering & Science (WCGO), held in the Yellow Mountains, Anhui, China on July 8-12, 2013. The papers fall into eight topical sections: mathematical programming; combinatorial optimization; duality theory; topology optimization; variational inequalities and complementarity problems; numerical optimization; stochastic models and simulation and complex simulation and supply chain analysis.
Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-15
Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-15 with Mathematics categories.
REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.