[PDF] Supercritical Steam Generator Design For The Hylife Ii Fusion Power Plant Using Molten Salts - eBooks Review

Supercritical Steam Generator Design For The Hylife Ii Fusion Power Plant Using Molten Salts


Supercritical Steam Generator Design For The Hylife Ii Fusion Power Plant Using Molten Salts
DOWNLOAD

Download Supercritical Steam Generator Design For The Hylife Ii Fusion Power Plant Using Molten Salts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Supercritical Steam Generator Design For The Hylife Ii Fusion Power Plant Using Molten Salts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Supercritical Steam Generator Design For The Hylife Ii Fusion Power Plant Using Molten Salts


Supercritical Steam Generator Design For The Hylife Ii Fusion Power Plant Using Molten Salts
DOWNLOAD
Author : Paul Martin Romberg
language : en
Publisher:
Release Date : 1994

Supercritical Steam Generator Design For The Hylife Ii Fusion Power Plant Using Molten Salts written by Paul Martin Romberg and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with categories.




Hylife Ii Power Conversion System Design And Cost Study


Hylife Ii Power Conversion System Design And Cost Study
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1990

Hylife Ii Power Conversion System Design And Cost Study written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with categories.


The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report.



The Heat Transport System And Plant Design For The Hylife 2 Fusion Reactor


The Heat Transport System And Plant Design For The Hylife 2 Fusion Reactor
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1990

The Heat Transport System And Plant Design For The Hylife 2 Fusion Reactor written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with categories.


HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs.



Masters Theses In The Pure And Applied Sciences


Masters Theses In The Pure And Applied Sciences
DOWNLOAD
Author : Wade H. Shafer
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Masters Theses In The Pure And Applied Sciences written by Wade H. Shafer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.


Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 39 (thesis year 1994) a total of 13,953 thesis titles from 21 Canadian and 159 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 39 reports theses submitted in 1994, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.



Molten Salt Steam Generator Subsystem Research Experiment


Molten Salt Steam Generator Subsystem Research Experiment
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1984

Molten Salt Steam Generator Subsystem Research Experiment written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with categories.


This is the executive summary for a study in which steam generator subsystem and component designs were developed for central receiver solar power applications using molten nitrate salt as the primary heat transfer medium. Designs were established for a 100 MWe stand-alone plant and for a 100 MWe fossil-fueled plant which has been 50% repowered by solar energy. In the course of this program, (1) an optimum steam system arrangement was selected for both the stand-alone and repowering applications; (2) cost-effective heat exchanger designs (preheater, evaporator, superheater, and reheater) were established based on conventional fabrication processes; (3) comprehensive subsystem and component specifications were prepared; (4) a control system was designed and characterized, and the system response to selected upset transients was simulated; (5) shop fabrication and field erection plans, schedules, and cost estimates were developed; and (6) development plans intended to resolve design uncertainties and assure user confidence and acceptance were prepared. The complete Phase I final report has been published as SAND 82-8177.



Hylife Ii Inertial Confinement Fusion Reactor Design


Hylife Ii Inertial Confinement Fusion Reactor Design
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1990

Hylife Ii Inertial Confinement Fusion Reactor Design written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with categories.


The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li2BeF4) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW{center dot}h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 15 refs., 9 figs., 3 tabs.



Hylife 2 Inertial Confinement Fusion Reactor Design


Hylife 2 Inertial Confinement Fusion Reactor Design
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1990

Hylife 2 Inertial Confinement Fusion Reactor Design written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with categories.


The HYLIFE-II inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x-rays, and blast to provide a 30-y lifetime. HYLIFE-I used liquid lithium. HYLIFE-II avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li2BeF4) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-I, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09$/kW{center dot}h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 12 refs., 9 figs., 5 tabs.



Incorporating Supercritical Steam Turbines Into Molten Salt Power Tower Plants


Incorporating Supercritical Steam Turbines Into Molten Salt Power Tower Plants
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2013

Incorporating Supercritical Steam Turbines Into Molten Salt Power Tower Plants written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with categories.


Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600ÀC were evaluated, which resulted in main steam temperatures of 553 and 580ÀC, respectively. Also, the effects of final feedwater temperature (between 260 and 320ÀC) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600ÀC and the other 565ÀC. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565ÀC. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.



Improvements To The Hylife Ii Inertial Fusion Power Plant Design


Improvements To The Hylife Ii Inertial Fusion Power Plant Design
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1994

Improvements To The Hylife Ii Inertial Fusion Power Plant Design written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with categories.


If the present research program is successful, heavy-ion beams can be used to ignite targets and to produce high gain for yields of about 350 MJ. HYLIFE-II is a power plant design based on surrounding such targets with thick liquid (Flibe, Li2BeF4) so that the chamber and other apparatus can not only stand up to these 350 MJ bursts of energy but do so without replacing components during the plant's 30-year life. The capacity factor will be increased and the cost of component replacement will be decreased. Continuous improvements to the design are being made to increase safety, decrease the generation of radioactive material, and reduce the cost of electricity (COE). Improvements discussed in this paper decreased COE for each effect by the amount in parentheses: increased plant size (22%), increased capacity factor and reduced component replacement (20%), reduced remote maintenance equipment (3.2%), use of nonnuclear grade chamber, pumps and piping (2.9%), reduced tritium inventory by a factor of 2.4, reduced excess tritium production with attendant increase energy release in the blanket (1.8%), corrected treatment of Flibe inventory costs (3.4%).



Baseload Nitrate Salt Central Receiver Power Plant Design Final Report


Baseload Nitrate Salt Central Receiver Power Plant Design Final Report
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2014

Baseload Nitrate Salt Central Receiver Power Plant Design Final Report written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.


The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P & IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler manufacturing. The cost and design goals for the project were met with this task, but the most interesting results had to do with defining the failure modes and looking at a "shakedown analysis" of the combined creep-fatigue failure. A separate task also looked at improving the absorber coatings on the receiver tubes that would improve the efficiency of the receiver. Significant progress was made on developing a novel paint with a high absorptivity that was on par with the current Pyromark, but shows additional potential to be optimized further. Although the coating did not meet the emissivity goals, preliminary testing the new paint shows potential to be much more durable, and potential to improve the receiver efficiency through a higher average absorptivity over the lifetime. Additional coatings were also designed and modeled results meet the project goals, but were not tested. Testing for low cycle fatigue of the full length receiver tubes was designed and constructed, but is still currently undergoing testing. A novel small heliostat was developed through an extensive brainstorming and down select. The concept was then detailed further with inputs from component testing and eventually a full prototype was built and tested. This task met or exceeded the accuracy and structure goals and also beat the cost goal. This provides a significant solar field costs savings for Abengoa that will be developed further to be used in future commercial plants. Ultimately the $0.09/kWhe (real 2009 $) and 6,400 hours goals of the project were met.