[PDF] Support Vector Machine - eBooks Review

Support Vector Machine


Support Vector Machine
DOWNLOAD

Download Support Vector Machine PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Support Vector Machine book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Support Vector Machines


Support Vector Machines
DOWNLOAD
Author : Ingo Steinwart
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-09-15

Support Vector Machines written by Ingo Steinwart and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-15 with Computers categories.


Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.



An Introduction To Support Vector Machines And Other Kernel Based Learning Methods


An Introduction To Support Vector Machines And Other Kernel Based Learning Methods
DOWNLOAD
Author : Nello Cristianini
language : en
Publisher: Cambridge University Press
Release Date : 2000-03-23

An Introduction To Support Vector Machines And Other Kernel Based Learning Methods written by Nello Cristianini and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-03-23 with Computers categories.


This is a comprehensive introduction to Support Vector Machines, a generation learning system based on advances in statistical learning theory.



Support Vector Machines


Support Vector Machines
DOWNLOAD
Author : Naiyang Deng
language : en
Publisher: CRC Press
Release Date : 2012-12-17

Support Vector Machines written by Naiyang Deng and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-17 with Business & Economics categories.


Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)—classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built. The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twin SVMs for binary classification problems, SVMs for solving multi-classification problems based on ordinal regression, SVMs for semi-supervised problems, and SVMs for problems with perturbations. To improve readability, concepts, methods, and results are introduced graphically and with clear explanations. For important concepts and algorithms, such as the Crammer-Singer SVM for multi-class classification problems, the text provides geometric interpretations that are not depicted in current literature. Enabling a sound understanding of SVMs, this book gives beginners as well as more experienced researchers and engineers the tools to solve real-world problems using SVMs.



Support Vector Machines Applications


Support Vector Machines Applications
DOWNLOAD
Author : Yunqian Ma
language : en
Publisher: Springer Science & Business Media
Release Date : 2014-02-12

Support Vector Machines Applications written by Yunqian Ma and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-12 with Technology & Engineering categories.


Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications.



Support Vector Machines Theory And Applications


Support Vector Machines Theory And Applications
DOWNLOAD
Author : Lipo Wang
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-06-21

Support Vector Machines Theory And Applications written by Lipo Wang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-06-21 with Computers categories.


The support vector machine (SVM) has become one of the standard tools for machine learning and data mining. This carefully edited volume presents the state of the art of the mathematical foundation of SVM in statistical learning theory, as well as novel algorithms and applications. Support Vector Machines provides a selection of numerous real-world applications, such as bioinformatics, text categorization, pattern recognition, and object detection, written by leading experts in their respective fields.



Knowledge Discovery With Support Vector Machines


Knowledge Discovery With Support Vector Machines
DOWNLOAD
Author : Lutz H. Hamel
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-20

Knowledge Discovery With Support Vector Machines written by Lutz H. Hamel and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Computers categories.


An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.



Learning With Kernels


Learning With Kernels
DOWNLOAD
Author : Bernhard Schölkopf
language : en
Publisher: MIT Press
Release Date : 2002

Learning With Kernels written by Bernhard Schölkopf and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Computers categories.


A comprehensive introduction to Support Vector Machines and related kernel methods.



Twin Support Vector Machines


Twin Support Vector Machines
DOWNLOAD
Author : Jayadeva
language : en
Publisher: Springer
Release Date : 2016-10-12

Twin Support Vector Machines written by Jayadeva and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-12 with Technology & Engineering categories.


This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.



Condition Monitoring With Vibration Signals


Condition Monitoring With Vibration Signals
DOWNLOAD
Author : Hosameldin Ahmed
language : en
Publisher: John Wiley & Sons
Release Date : 2020-01-07

Condition Monitoring With Vibration Signals written by Hosameldin Ahmed and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-07 with Technology & Engineering categories.


Provides an extensive, up-to-date treatment of techniques used for machine condition monitoring Clear and concise throughout, this accessible book is the first to be wholly devoted to the field of condition monitoring for rotating machines using vibration signals. It covers various feature extraction, feature selection, and classification methods as well as their applications to machine vibration datasets. It also presents new methods including machine learning and compressive sampling, which help to improve safety, reliability, and performance. Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines starts by introducing readers to Vibration Analysis Techniques and Machine Condition Monitoring (MCM). It then offers readers sections covering: Rotating Machine Condition Monitoring using Learning Algorithms; Classification Algorithms; and New Fault Diagnosis Frameworks designed for MCM. Readers will learn signal processing in the time-frequency domain, methods for linear subspace learning, and the basic principles of the learning method Artificial Neural Network (ANN). They will also discover recent trends of deep learning in the field of machine condition monitoring, new feature learning frameworks based on compressive sampling, subspace learning techniques for machine condition monitoring, and much more. Covers the fundamental as well as the state-of-the-art approaches to machine condition monitoringguiding readers from the basics of rotating machines to the generation of knowledge using vibration signals Provides new methods, including machine learning and compressive sampling, which offer significant improvements in accuracy with reduced computational costs Features learning algorithms that can be used for fault diagnosis and prognosis Includes previously and recently developed dimensionality reduction techniques and classification algorithms Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines is an excellent book for research students, postgraduate students, industrial practitioners, and researchers.



Imbalanced Learning


Imbalanced Learning
DOWNLOAD
Author : Haibo He
language : en
Publisher: John Wiley & Sons
Release Date : 2013-06-07

Imbalanced Learning written by Haibo He and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-07 with Technology & Engineering categories.


The first book of its kind to review the current status and future direction of the exciting new branch of machine learning/data mining called imbalanced learning Imbalanced learning focuses on how an intelligent system can learn when it is provided with imbalanced data. Solving imbalanced learning problems is critical in numerous data-intensive networked systems, including surveillance, security, Internet, finance, biomedical, defense, and more. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. The first comprehensive look at this new branch of machine learning, this book offers a critical review of the problem of imbalanced learning, covering the state of the art in techniques, principles, and real-world applications. Featuring contributions from experts in both academia and industry, Imbalanced Learning: Foundations, Algorithms, and Applications provides chapter coverage on: Foundations of Imbalanced Learning Imbalanced Datasets: From Sampling to Classifiers Ensemble Methods for Class Imbalance Learning Class Imbalance Learning Methods for Support Vector Machines Class Imbalance and Active Learning Nonstationary Stream Data Learning with Imbalanced Class Distribution Assessment Metrics for Imbalanced Learning Imbalanced Learning: Foundations, Algorithms, and Applications will help scientists and engineers learn how to tackle the problem of learning from imbalanced datasets, and gain insight into current developments in the field as well as future research directions.