[PDF] The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation - eBooks Review

The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation


The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation
DOWNLOAD

Download The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation


The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation
DOWNLOAD
Author : Weiwei Wang
language : en
Publisher:
Release Date : 2017

The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation written by Weiwei Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


Microseismic events, which are generated during hydraulic fracturing treatments, suggest that a complicated fracture network develops in many naturally−fractured unconventional reservoirs. Deformation along weak planes, such as cemented natural fractures, has been proposed as one of the possible reasons for fracture network complexity. Cemented natural fractures widely exist in shale reservoirs. They are diverse in composition and size, depending on the burial condition, the composition of the rock matrix, and the geochemical environment. The interaction between cemented natural fractures with hydraulic fractures generated as part of the reservoir stimulation are thought to impact hydraulic fracture propagation. Previous studies mostly treated natural fractures as frictional interfaces without considering the actual cement fillings. In this study, I analyzed the effect of cemented natural fractures on hydraulic fracture propagation by considering natural fracture thickness, mechanical properties and rock−cement interface bond strength. Firstly, I conducted a series of semi−circular bend (SCB) tests and corresponding numerical simulations to study the interaction between hydraulic and natural fractures. The SCB tests are attractive in general because of their simple setup with consistent results. The experimental results also served as a validation for numerical model. Two drawbacks of the SCB tests include that the test is unconfined and there is no fluid component. Numerical modeling can then be applied to extend results beyond these shortcomings. Synthetic hydrostone samples with embedded inclusions of different mechanical properties were used to mimic rock with cemented natural fractures. Experimental results identified several parameters that could be used to explain hydraulic fractures interaction with cemented natural fractures. The SCB test conditions that promoted fracture crossing were near−orthogonal approach angles, small natural fracture thicknesses, and strong rock−cement interfaces. Such conditions in a reservoir would promote long hydraulic fractures and less complicated fracture networks. In contrast, the SCB test conditions that caused fracture diverting were more oblique approach angles, large natural fracture thicknesses, and weak rock−cement interfaces, resulting in short hydraulic fractures and more complicated fracture networks. The SCB tests using synthetic rock samples provided insights into the hydraulic fracture propagation in naturally−fractured reservoirs. Through the numerical modeling with the finite element code in Abaqus, the impact of fluid driven fracturing on fracture−fracture interaction was investigated. Fracture propagation in two dimensions was modeled using the cohesive elements and anisotropic compressive remote stress conditions. Results suggest that if the natural fracture thickness is considered, the commonly used fracture crossing/diverting criterion will overestimate the hydraulic fracture crossing scenario. Factors including modulus contrast and coefficient of friction also influence hydraulic fracture interaction with natural fractures. An application of this work is the case of how bedding−parallel veins will affect hydraulic fracture height growth. Such natural fractures are abundant in the unconventional resource play in the Vaca Muerta formation in Argentina. When the rock−cement coefficient of friction is around 0.4−0.5, which most likely represents shale reservoirs, hydraulic fracture crossing behavior is affected by the modulus contrast between natural fractures and host rock as well as the natural fracture thickness.



Examining The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation In Hydrostone Block Experiments


Examining The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation In Hydrostone Block Experiments
DOWNLOAD
Author : Benjamin Lee Bahorich
language : en
Publisher:
Release Date : 2012

Examining The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation In Hydrostone Block Experiments written by Benjamin Lee Bahorich and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.


Micro seismic data and coring studies suggest that hydraulic fractures interact heavily with natural fractures creating complex fracture networks in naturally fractured reservoirs such as the Barnett shale, the Eagle Ford shale, and the Marcellus shale. However, since direct observations of subsurface hydraulic fracture geometries are incomplete or nonexistent, we look to properly scaled experimental research and computer modeling based on realistic assumptions to help us understand fracture intersection geometries. Most experimental analysis of this problem has focused on natural fractures with frictional interfaces. However, core observations from the Barnett and other shale plays suggest that natural fractures are largely cemented. To examine hydraulic fracture interactions with cemented natural fractures, we performed 9 hydraulic fracturing experiments in gypsum cement blocks that contained embedded planar glass, sandstone, and plaster discontinuities which acted as proxies for cemented natural fractures. There were three main fracture intersection geometries observed in our experimental program. 1) A hydraulic fracture is diverted into a different propagation path(s) along a natural fracture. 2) A taller hydraulic fracture bypasses a shorter natural fracture by propagating around it via height growth while also separating the weakly bonded interface between the natural fracture and the host rock. 3) A hydraulic fracture bypasses a natural fracture and also diverts down it to form separate fractures. The three main factors that seemed to have the strongest influence on fracture intersection geometry were the angle of intersection, the ratio of hydraulic fracture height to natural fracture height, and the differential stress. Our results show that bypass, separation of weakly bonded interfaces, diversion, and mixed mode propagation are likely in hydraulic fracture intersections with cemented natural fractures. The impact of this finding is that we need fully 3D computer models capable of accounting for bypass and mixed mode I-III fracture propagation in order to realistically simulate subsurface hydraulic fracture geometries.



Analysis Of Hydraulic Fracture Propagation In Fractured Reservoirs


Analysis Of Hydraulic Fracture Propagation In Fractured Reservoirs
DOWNLOAD
Author : Arash Dahi Taleghani
language : en
Publisher:
Release Date : 2009

Analysis Of Hydraulic Fracture Propagation In Fractured Reservoirs written by Arash Dahi Taleghani and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Gas reservoirs categories.


Large volumes of natural gas exist in tight fissured reservoirs. Hydraulic fracturing is one of the main stimulating techniques to enhance recovery from these fractured reservoirs. Although hydraulic fracturing has been used for decades for the stimulation of tight gas reservoirs, a thorough understanding of the interaction between induced hydraulic fractures and natural fractures is still lacking. Recent examples of hydraulic fracture diagnostic data suggest complex, multi-stranded hydraulic fracture geometry is a common occurrence. The interaction between pre-existing natural fractures and the advancing hydraulic fracture is a key condition leading to complex fracture patterns. Large populations of natural fractures that exist in formations such as the Barnett shale are sealed by precipitated cements which could be quartz, calcite, etc. Even though there is no porosity in the sealed fractures, they may still serve as weak paths for fracture initiation and/or for diverting the path of the growing hydraulic fractures. Performing hydraulic fracture design calculations under these complex conditions requires modeling of fracture intersections and tracking fluid fronts in the network of reactivated fissures. In this dissertation, the effect of the cohesiveness of the sealed natural fractures and the intact rock toughness in hydraulic fracturing are studied. Accordingly, the role of the pre-existing fracture geometry is also investigated. The results provide some explanations for significant differences in hydraulic fracturing in naturally fractured reservoirs from non-fractured reservoirs. For the purpose of this research, an extended finite element method (XFEM) code is developed to simulate fracture propagation, initiation and intersection. The motivation behind applying XFEM are the desire to avoid remeshing in each step of the fracture propagation, being able to consider arbitrary varying geometry of natural fractures and the insensitivity of fracture propagation to mesh geometry. New modifications are introduced into XFEM to improve stress intensity factor calculations, including fracture intersection criteria into the model and improving accuracy of the solution in near crack tip regions. The presented coupled fluid flow-fracture mechanics simulations extend available modeling efforts and provide a unified framework for evaluating fracture design parameters and their consequences. Results demonstrate that fracture pattern complexity is strongly controlled by the magnitude of in situ stress anisotropy, the rock toughness, the natural fracture cement strength, and the approach angle of the hydraulic fracture to the natural fracture. Previous studies (mostly based on frictional fault stability analysis) have concentrated on predicting the onset of natural fracture failure. However, the use of fracture mechanics and XFEM makes it possible to evaluate the progression of fracture growth over time as fluid is diverted into the natural fractures. Analysis shows that the growing hydraulic fracture may exert enough tensile and/or shear stresses on cemented natural fractures that they may be opened or slip in advance of hydraulic fracture tip arrival, while under some conditions, natural fractures will be unaffected by the hydraulic fracture. A threshold is defined for the fracture energy of cements where, for cases below this threshold, hydraulic fractures divert into the natural fractures. The value of this threshold is calculated for different fracture set orientations. Finally, detailed pressure profile and aperture distributions at the intersection between fracture segments show the potential for difficulty in proppant transport under complex fracture propagation conditions. Whether a hydraulic fracture crosses or is arrested by a pre-existing natural fracture is controlled by shear strength and potential slippage at the fracture intersections, as well as potential debonding of sealed cracks in the near-tip region of a propagating hydraulic fracture. We introduce a new more general criterion for fracture propagation at the intersections. We present a complex hydraulic fracture pattern propagation model based on the Extended Finite Element Method as a design tool that can be used to optimize treatment parameters under complex propagation conditions.



Effect Of A Natural Fracture On Hydraulic Fracture Propagation


Effect Of A Natural Fracture On Hydraulic Fracture Propagation
DOWNLOAD
Author : Naga Kiran Potluri
language : en
Publisher:
Release Date : 2004

Effect Of A Natural Fracture On Hydraulic Fracture Propagation written by Naga Kiran Potluri and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with categories.




Experimental Studies In Hydraulic Fracture Growth


Experimental Studies In Hydraulic Fracture Growth
DOWNLOAD
Author : Murtadha Jawad Al Tammar
language : en
Publisher:
Release Date : 2018

Experimental Studies In Hydraulic Fracture Growth written by Murtadha Jawad Al Tammar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


Novel experimental capabilities to study hydraulic fracturing in the laboratory are developed and utilized in this research. Fracturing experiments are conducted using two-dimensional (2-D) test specimens that are made from synthetic, porous materials with well-characterized properties. Fracture growth during the experiments is captured with clear, high resolution images and subsequent image processing using Digital Image Correlation (DIC) analyses. First, we investigated the problem of a hydraulic fracture induced in a soft layer bounded by harder layers. The experiments reveal a clear tendency for induced fractures to avoid harder bounding layers. This is seen as fracture deflection or kinking away from the harder layers, fracture curving between the harder bounding layers, and fracture tilt from the maximum far-field stress direction. In addition, when a fracture is induced in a relatively thin layer, the fracture avoids the harder bounding layers by initiating and propagating parallel to the bounding interfaces. Fracture propagation parallel to the bounding layers is also observed in relatively wide layers when the far-field stress is isotropic or very low. Complex fracture trajectories are induced in layered specimens when the far-field differential stress is low or intermediate. In a second set of experiments, we used homogeneous specimens with multiple fluid injection ports. It is clearly shown that injection-induced stresses can appreciably affect hydraulic fracture trajectories and fracturing pressures. We show that induced hydraulic fractures, under our laboratory conditions, are attracted to regions of high pore pressure. Induced fractures tend to propagate towards neighboring high pore pressure injection ports. The recorded breakdown pressure in the fracturing experiments decreases significantly as the number of neighboring injectors increases. The influence of an adjacent fluid injection source on the hydraulic fracture trajectory can be minimized or suppressed when the applied far-field differential stress is relatively high. Preferential fracture growth due to changes in pore pressure in field applications as compared to our laboratory observations is also discussed. In a third set of experiments, we show that the breakdown pressure of test specimens can be reduced markedly with low injection rates, cyclic borehole pressurization, and/or constant pressure injection. This is largely related to the extent of pressurized region around the borehole caused by fluid leakoff in dry specimens and possible specimen weakening by fluid contact. The breakdown pressure can also be reduced by notching the specimen borehole when the injection fluid is allowed to flow and leak off along the borehole notch. In a fourth set of experiments, we compared fracture growth induced by a viscous liquid and a gas which are glycerin and nitrogen, respectively. The experiments show that fractures propagate through test specimens in a gradual manner when induced by glycerin at various injection rates. By contrast, nitrogen injection induces fractures that grow much more rapidly, which we attribute to its compressible nature and ultralow viscosity. The breakdown pressure is also shown to be markedly lower for nitrogen fractures compared to glycerin fractures. Moreover, an experimental evidence of fluid lag when fractures are induced with viscous fluids is demonstrated. Lastly, experiments were conducted to examine the behavior of an induced hydraulic fracture as it approaches a cemented natural fracture. We show a tendency for the induced hydraulic fracture to cross thick natural fractures filled with softer materials than the host rock and to be diverted by thick natural fractures with harder filling materials. The induced hydraulic fracture also tends to cross hard natural fractures when the natural fractures are relatively thin. In addition, the induced hydraulic fracture from the injection port is shown to be diverted by a thin, hard natural fracture that is placed relatively close to the injection port but crosses the same natural fracture when placed farther away from the injection port. These observations, and numerous others, documented in this dissertation provide fundamental insights on various aspects of hydraulic fracture propagation. Our extensive set of laboratory observations are also very useful in validating numerical hydraulic fracturing simulators due to the small-scale, 2-D nature, and characterized properties of the test specimens used in the experiments



Geomechanics And Hydraulic Fracturing For Shale Reservoirs


Geomechanics And Hydraulic Fracturing For Shale Reservoirs
DOWNLOAD
Author : Yu Wang
language : en
Publisher: Scientific Research Publishing, Inc. USA
Release Date : 2020-07-01

Geomechanics And Hydraulic Fracturing For Shale Reservoirs written by Yu Wang and has been published by Scientific Research Publishing, Inc. USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-01 with Art categories.


This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.



Study Of Natural And Hydraulic Fracture Interaction Using Semi Circular Bending Experiments


Study Of Natural And Hydraulic Fracture Interaction Using Semi Circular Bending Experiments
DOWNLOAD
Author : Weiwei Wang
language : en
Publisher:
Release Date : 2014

Study Of Natural And Hydraulic Fracture Interaction Using Semi Circular Bending Experiments written by Weiwei Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.


Hydraulic fracturing is an indispensable technique for developing unconventional resources such as shale gas and tight oil. According to micro-seismic data, when hydraulic fractures interact with pre-existing natural fractures, the result can be a complex fracture network. While most simulation studies treat natural fractures as frictional interfaces with cohesion, core observations show that partially cemented and fully cemented natural fractures are widely present. We use semi-circular bending tests to examine propagation paths and strength of samples with pre-existing cemented fractures. In this study, synthetic Hydrostone samples with embedded inclusions of different mechanical properties are used to mimic cemented natural fractures. In a series of experiments, we assess the influence of the fracture approach angle, inclusion strength, and inclusion thickness on fracture propagation. Results show that fractures tend to cross inclusion with high approach angle and divert into the inclusion with low approach angle. The inclusion thickness does not change the crossing/diverting behavior for orthogonal approaching samples, but it changes the jog distance along the interface. Preliminary simulation results are used to explain the experimental observation. The assessments of fracture interaction in this study are in good agreement with previous work and theories.



Analysis Of Interaction Between Hydraulic And Natural Fractures


Analysis Of Interaction Between Hydraulic And Natural Fractures
DOWNLOAD
Author : Jaber Taheri-Shakib
language : en
Publisher:
Release Date : 2016

Analysis Of Interaction Between Hydraulic And Natural Fractures written by Jaber Taheri-Shakib and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Technology categories.


The behavior of natural fractures at the hydraulic fracturing (HF) treatment is one of the most important considerations in increasing the production from this kind of reservoirs. Therefore, considering the interaction between the natural fractures and hydraulic fractures can have great impact on the analysis and design of fracturing process. Due to the existence of such natural fractures, the perturbation stress regime around the tip of hydraulic fracture leads to some deviation in the propagation of path of hydraulic fracture. Increasing the ratio of transverse stress to the interaction stress results in a reduction in the deviation of hydraulic fracturing propagation trajectory in the vicinity of natural fracture. In this study, we modeled a hydraulic fracture with the extended finite element method (XFEM) using a cohesive-zone technique. The XFEM is used to discrete the equations, allowing for the simulation of induced fracture propagation; no re-meshing of domain is required to model the interaction between hydraulic and natural fractures. XFEM results reveal that the distance and angle of natural fracture with respect to the hydraulic fracture have a direct impact on the magnitude of tensile and shear debonding. The possibility of intersection of natural fracture by the hydraulic fracture will increase with increasing the deviation angle value. At the approaching stage of hydraulic fracture to the natural fracture, hydraulic fracture tip exerts remote compressional and tensile stress on the interface of the natural fracture, which leads to the activation and separation of natural fracture walls.



Simulation Of Hydraulic Fractures And Their Interactions With Natural Fractures


Simulation Of Hydraulic Fractures And Their Interactions With Natural Fractures
DOWNLOAD
Author : Varahanaresh Sesetty
language : en
Publisher:
Release Date : 2012

Simulation Of Hydraulic Fractures And Their Interactions With Natural Fractures written by Varahanaresh Sesetty and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.


Modeling the stimulated reservoir volume during hydraulic fracturing is important to geothermal and petroleum reservoir stimulation. The interaction between a hydraulic fracture and pre-existing natural fractures exerts significant control on stimulated volume and fracture network complexity. This thesis presents a boundary element and finite difference based method for modeling this interaction during hydraulic fracturing process. In addition, an improved boundary element model is developed to more accurately calculate the total stimulated reservoir volume. The improved boundary element model incorporates a patch to calculate the tangential stresses on fracture walls accurately, and includes a special crack tip element at the fracture end to capture the correct stress singularity the tips The fracture propagation model couples fluid flow to fracture deformation, and accounts for fracture propagation including the transition of a mechanically-closed natural fractures to a hydraulic fracture. The numerical model is used to analyze a number of stimulation scenarios and to study the resulting hydraulic fracture trajectory, fracture aperture, and pressures as a function of injection time. The injection pressure, fracture aperture profiles shows the complexity of the propagation process and its impact on stimulation design and proppant placement. The injection pressure is observed to decrease initially as hydraulic fracture propagates and then it either increases or decreases depending on the factors such as distance between hydraulic fracture and natural fracture, viscosity of the injected fluid, injection rate and also other factor that are discussed in detail in below sections. Also, the influence of flaws on natural fracture in its opening is modeled. Results shows flaws that are very small in length will not propagate but are influencing the opening of natural fracture. If the flaw is located near to one end tip the other end tip will likely propagate first and vice versa. This behavior is observed due to the stress shadowing effect of flaw on the natural fracture. In addition, sequential and simultaneous injection and propagation of multiple fractures is modeled. Results show that for sequential injection, the pressure needed to initiate the later fractures increases but the geometry of the fractures is less complicated than that obtained from simultaneous injection under the same fracture spacing and injection. It is also observed that when mechanical interaction is present, the fractures in sequential fracturing have a higher width reduction as the later fractures are formed.



Reservoir Stimulation


Reservoir Stimulation
DOWNLOAD
Author : Michael J. Economides
language : en
Publisher:
Release Date : 2000-06-23

Reservoir Stimulation written by Michael J. Economides and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-06-23 with Technology & Engineering categories.


Sets forth a rationalisation of stimulation using reservoir engineering concepts, and addresses topics such as formation characterisation, hydraulic fracturing and matrix acidizing. Formation damage, which refers to a loss in reservoir productivity, is also examined comprehensively.