[PDF] Transmission Power Management For Wireless Health Applications - eBooks Review

Transmission Power Management For Wireless Health Applications


Transmission Power Management For Wireless Health Applications
DOWNLOAD

Download Transmission Power Management For Wireless Health Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Transmission Power Management For Wireless Health Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Transmission Power Management For Wireless Health Applications


Transmission Power Management For Wireless Health Applications
DOWNLOAD
Author : Navid Amini
language : en
Publisher:
Release Date : 2012

Transmission Power Management For Wireless Health Applications written by Navid Amini and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.


The proliferation of ubiquitous sensing devices along with advances in low power wireless communication technology have resulted in the extensive use of wireless body area networks (WBANs) as the building blocks of the emerging field of wireless health. In these battery-operated WBANs, the sensor devices are strategically placed in/on the human body and the short/mid/long wireless communications are conducted on/off the surface of the body. As the battery energy does not follow Moore's law, energy-efficiency is always one of the design challenges of wireless health-monitoring systems, impacting usability, security, and cost. The idea of transmission power control (TPC) is to automatically reduce the radio amplifier's output power when the transmission power is more than required. Reduced transmission power translates into more energy savings and reduced interference problems. TPC techniques have been used in abundance in cellular networks and wireless LANs. TPC schemes for WBANs, however, are still in their infancy. For example, current IEEE 802.15.4 specifications do not differentiate between mobile and static settings, thus leaving WBAN transmitters in the dark as to what transmission power level they should utilize. In this dissertation, we have investigated the potential benefits and limitations of TPC as a means to extend the battery lifetime in WBANs at the first three abstraction levels. Physical and MAC layers' approach to TPC perform a local optimization, whereas network layer TPC is capable of a global optimization. At the network layer, we analytically solve an optimization problem whose solution determines an important parameter, i.e., energy-efficient cluster size, for a class of routing/MAC protocols in WBANs. Assuming that the routes are established in an energy-efficient manner, we then experimentally profile the 2.4 GHz on/off-body radio channel under several scenarios regarding mobility states and environments, and we showed that fixed transmission power either wastes energy or hinders reliability. Finally, we devote our attention to an ambulatory medical monitoring WBAN system, which is tied up with different characteristics in terms of mobility, periodicity, and `unforgivingness' of the wireless channel as a result of proximity to the ground as well as to human's body. The target ambulatory WBAN system encompasses a pair of wireless instrumented insoles (known as smart insoles) for gait data collection, plantar pressure monitoring, and gait analysis. We design a sensor-assisted TPC scheme that augments in-network information with information from built-in sensors. To this end, multiple mobility states are defined for the smart insoles and the mobility states are incorporated into transmission power control policies. Available sensor information is leveraged to detect the mobility states, based on which the TPC scheme switches strategies. We validate this new idea of switching transmission power control strategies by implementing and evaluating the sensor-assisted scheme and comparing it against a frame-based TPC scheme, which adjusts the transmit power solely based on recent information about packet transmission successes and failures. Our testbed experiments involving mixed mobility scenarios show that our TPC scheme obtains up to 50% increase in the battery lifetime, enabling the smart insoles to be used in uncontrolled environments. Such an improvement in battery longevity (from 4.0 hours to 7.8 hours) is made by reducing the average energy consumed for communication of a single packet from 4.51 mJ/pkt to 2.27 mJ/pkt. Although designed for the smart insoles as a severely energy-constrained device, the sensor-assisted TPC technique is readily deployable on a variety of today's commodity devices to make a connection between the sensing subsystem and the communication subsystem of such devices. In addition, as the underlying mobility state detection methods place relaxed requirements on how the device should be worn in terms of orientation and position, they can be used for a variety of purposes, such as improving the patient's compliance with medical treatments and therapies.



Energy Harvesting For Wireless Sensor Networks


Energy Harvesting For Wireless Sensor Networks
DOWNLOAD
Author : Olfa Kanoun
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2018-11-19

Energy Harvesting For Wireless Sensor Networks written by Olfa Kanoun and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-19 with Science categories.


Wireless sensors and sensor networks (WSNs) are nowadays becoming increasingly important due to their decisive advantages. Different trends towards the Internet of Things (IoT), Industry 4.0 and 5G Networks address massive sensing and admit to have wireless sensors delivering measurement data directly to the Web in a reliable and easy manner. These sensors can only be supported, if sufficient energy efficiency and flexible solutions are developed for energy-aware wireless sensor nodes. In the last years, different possibilities for energy harvesting have been investigated showing a high level of maturity. This book gives therefore an overview on fundamentals and techniques for energy harvesting and energy transfer from different points of view. Different techniques and methods for energy transfer, management and energy saving on network level are reported together with selected interesting applications. The book is interesting for researchers, developers and students in the field of sensors, wireless sensors, WSNs, IoT and manifold application fields using related technologies. The book is organized in four major parts. The first part of the book introduces essential fundamentals and methods, while the second part focusses on vibration converters and hybridization. The third part is dedicated to wireless energy transfer, including both RF and inductive energy transfer. Finally, the fourth part of the book treats energy saving and management strategies. The main contents are: Essential fundamentals and methods of wireless sensors Energy harvesting from vibration Hybrid vibration energy converters Electromagnetic transducers Piezoelectric transducers Magneto-electric transducers Non-linear broadband converters Energy transfer via magnetic fields RF energy transfer Energy saving techniques Energy management strategies Energy management on network level Applications in agriculture Applications in structural health monitoring Application in power grids Prof. Dr. Olfa Kanoun is professor for measurement and sensor technology at Chemnitz university of technology. She is specialist in the field of sensors and sensor systems design.



Energy Efficiency Of Medical Devices And Healthcare Applications


Energy Efficiency Of Medical Devices And Healthcare Applications
DOWNLOAD
Author : Amr Mohamed
language : en
Publisher: Academic Press
Release Date : 2020-02-15

Energy Efficiency Of Medical Devices And Healthcare Applications written by Amr Mohamed and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-15 with Business & Economics categories.


Energy Efficiency of Medical Devices and Healthcare Facilities provides comprehensive coverage of cutting-edge, interdisciplinary research, and commercial solutions in this field. The authors discuss energy-related challenges, such as energy-efficient design, including renewable energy, of different medical devices from a hardware and mechanical perspectives, as well as energy management solutions and techniques in healthcare networks and facilities. They also discuss energy-related trade-offs to maximize the medical devices availability, especially battery-operated ones, while providing immediate response and low latency communication in emergency situations, sustainability and robustness for chronic disease treatment, in addition to high protection against cyber-attacks that may threaten patients’ lives. Finally, the book examines technologies and future trends of next generation healthcare from an energy efficiency and management point of view, such as personalized or smart health and the Internet of Medical Things — IoMT, where patients can participate in their own treatment through innovative medical devices and software applications and tools. The books applied approach makes it a useful resource for engineering researchers and practitioners of all levels involved in medical devices development, healthcare systems, and energy management of healthcare facilities. Graduate students in mechanical and electric engineering, and computer science students and professionals also benefit. Provides in-depth knowledge and understanding of the benefits of energy efficiency in the design of medical devices and healthcare networks and facilities Presents best practices and state-of-art techniques and commercial solutions in energy management of healthcare networks and systems Explores key energy tradeoffs to provide scalable, robust, and effective healthcare systems and networks



Model Driven Transmission Power Management For Wireless Sensor Networks


Model Driven Transmission Power Management For Wireless Sensor Networks
DOWNLOAD
Author : 沙漠
language : en
Publisher:
Release Date : 2009

Model Driven Transmission Power Management For Wireless Sensor Networks written by 沙漠 and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Power resources categories.




Energy Management In Wireless Cellular And Ad Hoc Networks


Energy Management In Wireless Cellular And Ad Hoc Networks
DOWNLOAD
Author : Muhammad Zeeshan Shakir
language : en
Publisher: Springer
Release Date : 2016-01-14

Energy Management In Wireless Cellular And Ad Hoc Networks written by Muhammad Zeeshan Shakir and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-14 with Technology & Engineering categories.


This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services.



Practical And Robust Power Management For Wireless Sensor Networks


Practical And Robust Power Management For Wireless Sensor Networks
DOWNLOAD
Author : Gregory W. Hackmann
language : en
Publisher:
Release Date : 2011

Practical And Robust Power Management For Wireless Sensor Networks written by Gregory W. Hackmann and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Electronic dissertations categories.


Wireless Sensor Networks (WSNs) consist of tens or hundreds of small, inexpensive computers equipped with sensors and wireless communication capabilities. Because WSNs can be deployed without fixed infrastructure, they promise to enable sensing applications in environments where installing such infrastructure is not feasible. However, the lack of fixed infrastructure also presents a key challenge for application developers: sensor nodes must often operate for months or years at a time from fixed or limited energy sources. The focus of this dissertation is on reusable power management techniques designed to facilitate sensor network developers in achieving their systems' required lifetimes. Broadly speaking, power management techniques fall into two categories. Many power management protocols developed within the WSN community target specific hardware subsystems in isolation, such as sensor or radio hardware. The first part of this dissertation describes the Adaptive and Robust Topology control protocol (ART), a representative hardware-specific technique for conserving energy used by packet transmissions. In addition to these single-subsystem approaches, many applications can benefit greatly from holistic power management techniques that jointly consider the sensing, computation, and communication costs of potential application configurations. The second part of this dissertation extends this holistic power management approach to two families of structural health monitoring applications. By applying a partially-decentralized architecture, the cost of collecting vibration data for analysis at a centralized base station is greatly reduced. Finally, the last part of this dissertation discusses work toward a system for clinical early warning and intervention. The feasibility of this approach is demonstrated through preliminary study of an early warning component based on historical clinical data. An ongoing clinical trial of a real-time monitoring component also provides important guidelines for future clinical deployments based on WSNs.



Energy Management In Biomedical Applications


Energy Management In Biomedical Applications
DOWNLOAD
Author : Al-Thaddeus Avestruz
language : en
Publisher:
Release Date : 2016

Energy Management In Biomedical Applications written by Al-Thaddeus Avestruz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


Wireless health and fitness devices as well as traditional medical devices such as cardiac and neurological implants, skin patch sensors, and automatic drug delivery pumps extend and improve life by providing therapy, monitoring, and diagnostics. They ensure health and safety while promoting prevention and wellness. These devices are found in chronic and acute settings that range from emergency and critical care to personalized health and telemedicine; they accelerate medical research and support data-driven medicine. The push towards the ubiquity of ever smaller devices with more functionality compels power-centric strategies in every aspect of design. Long-term implantables such as neural implants for the treatment of Parkinson's disease and epilepsy traditionally rely on primary cell batteries, which occupy a large portion of the implant volume and when exhausted require a new surgery for replacement. The motivation of the thesis is to reduce the size (weight and volume) and increase the lifetime of neural implants through the use of a smaller rechargeable battery. The two strategies chosen in this thesis are: 1) using a new spread-spectrum wireless power transfer to recharge and ultimately, eliminate the battery through direct powering; 2) reducing power consumption through the use of closed-loop decision and parameterization of electrical stimulation using feedback from neural sensing. The first part of this thesis is the development of spread-spectrum wireless power transfer to deliver power over many frequencies over a uniform single-sided magnetic field, which enables better design of systems with various physical dimensions, lower tissue loss, and less sensitivity to component tolerances, while remaining within the regulatory limits for electromagnetic interference. The investigation encompasses the design of a spread-spectrum transmitter and modulation method that resolves the ostensible paradox of "resonant, yet spread-spectrum", a passive power receiver, and power transfer using a uniform single-sided magnetic field. The second part of this thesis involves the design of a system to amplify and extract the spectral power of neural electrical signals from the brain. From the spectral power, "biomarkers" are extracted to titrate deep brain electrical stimulation to improve therapy and better utilize this functionality that dominates the implant power consumption.



Wireless Power Transfer For Medical Microsystems


Wireless Power Transfer For Medical Microsystems
DOWNLOAD
Author : Tianjia Sun
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-12

Wireless Power Transfer For Medical Microsystems written by Tianjia Sun and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-12 with Technology & Engineering categories.


This book provides an in-depth introduction to the newest technologies for designing wireless power transfer systems for medical applications. The authors present a systematic classification of the various types of wireless power transfer, with a focus on inductive power coupling. Readers will learn to overcome many challenges faced in the design a wirelessly powered implant, such as power transfer efficiency, power stability, and the size of power antennas and circuits. This book focuses exclusively on medical applications of the technology and a batteryless capsule endoscopy system and other, real wirelessly powered systems are used as examples of the techniques described.



Dynamic Wireless Access Methods With Applications To Ehealth Services


Dynamic Wireless Access Methods With Applications To Ehealth Services
DOWNLOAD
Author : Phond Phunchongharn
language : en
Publisher:
Release Date : 2009

Dynamic Wireless Access Methods With Applications To Ehealth Services written by Phond Phunchongharn and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.


For opportunistic spectrum access and spectrum sharing in cognitive radio networks, one key problem is how to develop wireless access schemes for secondary users so that harmful interference to primary users can be avoided and quality-of-service (QoS) of secondary users can be guaranteed. In this research, dynamic wireless access protocols for secondary users are designed and optimized for both infrastructure-based and ad-hoc wireless networks. Under the infrastructure-based model, the secondary users are connected through a controller (i.e., an access point). In particular, the problem of wireless access for eHealth applications is considered. In a single service cell, an innovative wireless access scheme, called electromagnetic interference (EMI)-aware prioritized wireless access, is proposed to address the issues of EMI to the medical devices and QoS differentiation for different eHealth applications. Afterwards, the resource management problem for multiple service cells, specifically, in multiple spatial reuse time-division multiple access (STDMA) networks is addressed. The problem is formulated as a dual objective optimization problem that maximizes the spectrum utilization of secondary users and minimizes their power consumption subject to the EMI constraints for active and passive medical devices and minimum throughput guarantee for secondary users. Joint scheduling and power control algorithms based on greedy approaches are proposed to solve the problem with much less computational complexity. In an ad-hoc wireless network, the robust transmission scheduling and power control problem for collision-free spectrum sharing between secondary and primary users in STDMA wireless networks is investigated. Traditionally, the problem only considers the average link gains; therefore, QoS violation can occur due to improper power allocation with respect to instantaneous channel gain realization. To overcome this problem, a robust power control problem is formulated. A column generation based algorithm is proposed to solve the problem by considering only the potential subset of variables when solving the problem. To increase the scalability, a novel distributed two-stage algorithm based on the distributed column generation method is then proposed to obtain the near-optimal solution of the robust transmission schedules for vertical spectrum sharing in an ad-hoc wireless network.



Wireless Power Transmission For Sustainable Electronics


Wireless Power Transmission For Sustainable Electronics
DOWNLOAD
Author : Nuno Borges Carvalho
language : en
Publisher: John Wiley & Sons
Release Date : 2020-01-30

Wireless Power Transmission For Sustainable Electronics written by Nuno Borges Carvalho and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-30 with Technology & Engineering categories.


Provides a collection of works produced by COST Action IC1301 with the goal of achieving significant advances in the field of wireless power transmission This book constitutes together information from COST Action IC1301, a group of academic and industry experts seeking to align research efforts in the field of wireless power transmission (WPT). It begins with a discussion of backscatter as a solution for Internet of Things (IoT) devices and goes on to describe ambient backscattering sensors that use FM broadcasting for low cost and low power wireless applications. The book also explores localization of passive RFID tags and augmented tags using nonlinearities of RFID chips. It concludes with a review of methods of electromagnetic characterization of textile materials for the development of wearable antennas. Wireless Power Transmission for Sustainable Electronics: COST WiPE - IC1301 covers textile-supported wireless energy transfer, and reviews methods for the electromagnetic characterization of textile materials for the development of wearable antennas. It also looks at: backscatter RFID sensor systems for remote health monitoring; simultaneous localization (of robots and objects) and mapping (SLAM); autonomous system of wireless power distribution for static and moving nodes of wireless sensor networks; and more. Presents techniques for smart beam-forming for "on demand" wireless power transmission (WPT) Discusses RF and microwave energy harvesting for space applications Describes miniaturized RFID transponders for object identification and sensing Wireless Power Transmission for Sustainable Electronics: COST WiPE - IC1301 is an excellent book for both graduate students and industry engineers involved in wireless communications and power transfer, and sustainable materials for those fields.