[PDF] Uncertainty Analysis Of Capacity Estimates And Leakage Potential For Geologic Storage Of Carbon Dioxide In Saline Aquifers - eBooks Review

Uncertainty Analysis Of Capacity Estimates And Leakage Potential For Geologic Storage Of Carbon Dioxide In Saline Aquifers


Uncertainty Analysis Of Capacity Estimates And Leakage Potential For Geologic Storage Of Carbon Dioxide In Saline Aquifers
DOWNLOAD

Download Uncertainty Analysis Of Capacity Estimates And Leakage Potential For Geologic Storage Of Carbon Dioxide In Saline Aquifers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Uncertainty Analysis Of Capacity Estimates And Leakage Potential For Geologic Storage Of Carbon Dioxide In Saline Aquifers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Uncertainty Analysis Of Capacity Estimates And Leakage Potential For Geologic Storage Of Carbon Dioxide In Saline Aquifers


Uncertainty Analysis Of Capacity Estimates And Leakage Potential For Geologic Storage Of Carbon Dioxide In Saline Aquifers
DOWNLOAD
Author : Yamama Raza
language : en
Publisher:
Release Date : 2009

Uncertainty Analysis Of Capacity Estimates And Leakage Potential For Geologic Storage Of Carbon Dioxide In Saline Aquifers written by Yamama Raza and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.


(cont.) Any development of regulation of geologic storage and relevant policies should take uncertainty into consideration. Better understanding of the uncertainty in the science of geologic storage can influence the areas of further research, and improve the accuracy of models that are being used. Incorporating uncertainty analysis into regulatory requirements for site characterization will provide better oversight and management of injection activities. With the proper management and monitoring of sites, the establishment of proper liability regimes, accounting rules and compensation mechanisms for leakage, geologic storage can be a safe and effective carbon mitigation tool to combat climate change.



Uncertainty Analysis Of Carbon Sequestration In An Inclined Deep Saline Aquifer


Uncertainty Analysis Of Carbon Sequestration In An Inclined Deep Saline Aquifer
DOWNLOAD
Author : Guang Yang
language : en
Publisher:
Release Date : 2012

Uncertainty Analysis Of Carbon Sequestration In An Inclined Deep Saline Aquifer written by Guang Yang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Aquifers categories.


Geologic Carbon Sequestration (GCS) is a proposed means to reduce atmospheric carbon dioxide (CO2 ). In Wyoming, GCS is proposed for the Nugget Sandstone, an eolian sandstone exhibiting permeability heterogeneity. Using subsets of static site characterization data, this study builds a suite of increasingly complex geologic model families for the Nugget Sandstone in the Wyoming Overthrust Belt, which is an inclined deep saline aquifer. These models include: a homogeneous model (FAM1), a stationary geostatistical facies model with constant petrophyscial properties in each facies (FAM2a), a stationary geostatistical petrophysical model (FAM2b), a stationary facies model with sub-facies petrophysical variability (FAM3), and a non-stationary facies model (with sub-facies variability) conditioned to soft data (FAM4). These families, representing increasingly sophisticated conceptual models built with increasing amounts of site data, were simulated with the same CO2 injection test (50-year duration at ~1/3 Mt per year), followed by a 2000-year monitoring phase. Based on the Design of Experiment (DOE), an efficient sensitivity analysis (SA) is conducted for all model families, systematically varying uncertain input parameters, while assuming identical production scenario (i.e., well configuration, rate, BHP constraint) and boundary condition (i.e., model is part of a larger semi-infinite system where the injected gas can flow out). Results are compared among the families at different time scales to identify parameters that have first order impact on select simulation outcomes. For predicting CO2 storage ratio (SR) and brine leakage, at both time scales (i.e., end of injection and end of monitoring), more geologic factors are revealed to be important as model complexity is increased, while the importance of engineering factors is simultaneously diminished. In predicting each of the trapped and dissolved gases, when model is of greater complexity, more geologic factors are identified as important with increasing time. This effect, however, cannot be revealed by simpler models. Based on results of the SA, a response surface (RS) analysis is conducted next to generate prediction envelopes of the outcomes which are further compared among the model families. Results suggest a large uncertainty range in the SR given the uncertainties of the parameter and modeling choices. At the end of injection, SR ranges from 0.18 to 0.38; at the end of monitoring, SR ranges from 0.71 to 0.98. In predicting the SR, during the entire simulation time, uncertainty ranges of FAM2b, FAM3, and FAM4 are larger than those of FAM1 and FAM2a, since the former models incorporate more geological complexities. The uncertainty range also changes with time and with the model families. By the end of injection, prediction envelops of all families are more or less similar. Over this shorter time scale, where heterogeneities near the injection site are not significantly different among the different model representations, simpler models can capture the uncertainty in the predicted SR. During the monitoring phase, prediction envelope of each family deviates gradually from one another, reflecting the different (evolving) large scale heterogeneity experienced by each family as plume migrates and grows continuously. Compared to FAM4 (i.e., the most sophisticated model), all other families estimate higher mean SRs. The lesser the amount of site data are incorporated (i.e., lesser geological complexities), the greater the estimated mean SR. In terms of magnitude and range of the uncertainty, prediction envelop of FAM3 is the closest to that of FAM4, while FAM2b's uncertainty range is the largest and FAM1 and FAM2a's ranges are small. Finally, end-member gas plume footprint for each family is established from results of the RS designs (i.e., corresponding to SR minimum, median, and maximum). For FAM1 and FAM2a, at each time scale inspected, the end-member gas plume footprints are not as drastically different as in FAM2b, 3, and 4, since their SR uncertainty range is comparatively small. However, for families of greater geological complexity (i.e., FAM2b, FAM3, and FAM4), the differences are much more significant: gas plume of minimum SR sits around the wellbore and doesn't migrate far, while gas plume of maximum SR migrates a great distance from the wellbore. To summarize, geologic factors and associated conceptual model uncertainty can dominate the uncertainty in predicting SR, brine leakage, and plume footprint. At the study site, better characterization of geologic data such as porosity-permeability transform and facies correlation structure, can lead to significantly reduced uncertainty in predictions. Given the current uncertainty in parameters and modeling choices, CO2 plume predicted by the majority of the simulation runs is either trapped near the injection site (e.g., due to low formation permeability and its heterogeneity) or is gravity-stable under conditions of higher permeability and lower temperature gradient, suggesting a low leakage risk. The inclined Nugget Sandstone at the study site appears to be a viable candidate for safe GCS in this region.



Essentials Of Risk Theory


Essentials Of Risk Theory
DOWNLOAD
Author : Sabine Roeser
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-02

Essentials Of Risk Theory written by Sabine Roeser and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-02 with Science categories.


Risk has become one of the main topics in fields as diverse as engineering, medicine and economics, and it is also studied by social scientists, psychologists and legal scholars. This Springer Essentials version offers an overview of the in-depth handbook and highlights some of the main points covered in the Handbook of Risk Theory. The topic of risk also leads to more fundamental questions such as: What is risk? What can decision theory contribute to the analysis of risk? What does the human perception of risk mean for society? How should we judge whether a risk is morally acceptable or not? Over the last couple of decades questions like these have attracted interest from philosophers and other scholars into risk theory. This brief offers the essentials of the handbook provides for an overview into key topics in a major new field of research and addresses a wide range of topics, ranging from decision theory, risk perception to ethics and social implications of risk. It aims to promote communication and information among all those who are interested in theoretical issues concerning risk and uncertainty. The Essentials of Risk Theory brings together internationally leading philosophers and scholars from other disciplines who work on risk theory. The contributions are accessibly written and highly relevant to issues that are studied by risk scholars. The Essentials of Risk Theory will be a helpful starting point for all risk scholars who are interested in broadening and deepening their current perspectives. ​



Handbook Of Risk Theory


Handbook Of Risk Theory
DOWNLOAD
Author : Rafaela Hillerbrand
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-12

Handbook Of Risk Theory written by Rafaela Hillerbrand and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-12 with Science categories.


Risk has become one of the main topics in fields as diverse as engineering, medicine and economics, and it is also studied by social scientists, psychologists and legal scholars. But the topic of risk also leads to more fundamental questions such as: What is risk? What can decision theory contribute to the analysis of risk? What does the human perception of risk mean for society? How should we judge whether a risk is morally acceptable or not? Over the last couple of decades questions like these have attracted interest from philosophers and other scholars into risk theory. This handbook provides for an overview into key topics in a major new field of research. It addresses a wide range of topics, ranging from decision theory, risk perception to ethics and social implications of risk, and it also addresses specific case studies. It aims to promote communication and information among all those who are interested in theoetical issues concerning risk and uncertainty. This handbook brings together internationally leading philosophers and scholars from other disciplines who work on risk theory. The contributions are accessibly written and highly relevant to issues that are studied by risk scholars. We hope that the Handbook of Risk Theory will be a helpful starting point for all risk scholars who are interested in broadening and deepening their current perspectives.



Handbook Of Risk Theory


Handbook Of Risk Theory
DOWNLOAD
Author : Sabine Roeser
language : en
Publisher: Springer Science & Business Media
Release Date : 2012

Handbook Of Risk Theory written by Sabine Roeser and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Decision making categories.


Risk has become one of the main topics in fields as diverse as engineering, medicine and economics, and it is also studied by social scientists, psychologists and legal scholars. But the topic of risk also leads to more fundamental questions such as: What is risk? What can decision theory contribute to the analysis of risk? What does the human perception of risk mean for society? How should we judge whether a risk is morally acceptable or not? Over the last couple of decades questions like these have attracted interest from philosophers and other scholars into risk theory. This handbook provides for an overview into key topics in a major new field of research. It addresses a wide range of topics, ranging from decision theory, risk perception to ethics and social implications of risk, and it also addresses specific case studies. It aims to promote communication and information among all those who are interested in theoetical issues concerning risk and uncertainty. This handbook brings together internationally leading philosophers and scholars from other disciplines who work on risk theory. The contributions are accessibly written and highly relevant to issues that are studied by risk scholars. We hope that the Handbook of Risk Theory will be a helpful starting point for all risk scholars who are interested in broadening and deepening their current perspectives.



Geologic Carbon Sequestration


Geologic Carbon Sequestration
DOWNLOAD
Author : V. Vishal
language : en
Publisher: Springer
Release Date : 2016-05-11

Geologic Carbon Sequestration written by V. Vishal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-11 with Science categories.


This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.



Data Driven Analytics For The Geological Storage Of Co2


Data Driven Analytics For The Geological Storage Of Co2
DOWNLOAD
Author : Shahab Mohaghegh
language : en
Publisher: CRC Press
Release Date : 2018-05-20

Data Driven Analytics For The Geological Storage Of Co2 written by Shahab Mohaghegh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-20 with Science categories.


Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.



Aquifer Management For Co2 Sequestration


Aquifer Management For Co2 Sequestration
DOWNLOAD
Author : Abhishek Anchliya
language : en
Publisher:
Release Date : 2010

Aquifer Management For Co2 Sequestration written by Abhishek Anchliya and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with categories.


Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers is estimated to be as high as 1,000 gigatonnes of CO2.(IPCC). Published reports on the potential for sequestration fail to address the necessity of storing CO2 in a closed system. This work addresses issues related to sequestration of CO2 in closed aquifers and the risk associated with aquifer pressurization. Through analytical modeling we show that the required volume for storage and the number of injection wells required are more than what has been envisioned, which renders geologic sequestration of CO2 a profoundly nonfeasible option for the management of CO2 emissions unless brine is produced to create voidage and pressure relief. The results from our analytical model match well with a numerical reservoir simulator including the multiphase physics of CO2 sequestration. Rising aquifer pressurization threatens the seal integrity and poses a risk of CO2 leakage. Hence, monitoring the long-term integrity of CO2 storage reservoirs will be a critical aspect for making geologic sequestration a safe, effective and acceptable method for greenhouse gas control. Verification of long-term CO2 residence in receptor formations and quantification of possible CO2 leaks are required for developing a risk assessment framework. Important aspects of pressure falloff tests for CO2 storage reservoirs are discussed with a focus on reservoir pressure monitoring and leakage detection. The importance of taking regular pressure falloffs for a commercial sequestration project and how this can help in diagnosing an aquifer leak will be discussed. The primary driver for leakage in bulk phase injection is the buoyancy of CO2 under typical deep reservoir conditions. Free-phase CO2 below the top seal is prone to leak if a breach happens in the top seal. Consequently, another objective of this research is to propose a way to engineer the CO2 injection system in order to accelerate CO2 dissolution and trapping. The engineered system eliminates the buoyancy-driven accumulation of free gas and avoids aquifer pressurization by producing brine out of the system. Simulations for 30 years of CO2 injection followed by 1,000 years of natural gradient show how CO2 can be securely and safely stored in a relatively smaller closed aquifer volume and with a greater storage potential. The engineered system increases CO2 dissolution and capillary trapping over what occurs under the bulk phase injection of CO2. This thesis revolves around identification, monitoring and mitigation of the risks associated with geological CO2 sequestration.



Geological Storage Of Carbon Dioxide Co2


Geological Storage Of Carbon Dioxide Co2
DOWNLOAD
Author : J Gluyas
language : en
Publisher: Elsevier
Release Date : 2013-11-23

Geological Storage Of Carbon Dioxide Co2 written by J Gluyas and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-23 with Technology & Engineering categories.


Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind’s emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS). Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands. Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS



Carbon Sequestration And Its Role In The Global Carbon Cycle


Carbon Sequestration And Its Role In The Global Carbon Cycle
DOWNLOAD
Author : Brian J. McPherson
language : en
Publisher: John Wiley & Sons
Release Date : 2013-05-02

Carbon Sequestration And Its Role In The Global Carbon Cycle written by Brian J. McPherson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-02 with Science categories.


Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 183. For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: The global carbon cycle and verification and assessment of global carbon sources and sinks Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage Predicting, monitoring, and verifying effectiveness of different forms of carbon storage Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.