A Cookbook With Probability One

DOWNLOAD
Download A Cookbook With Probability One PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Cookbook With Probability One book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Cookbook With Probability One
DOWNLOAD
Author : Damiano Rossello
language : en
Publisher: Springer Nature
Release Date : 2024-07-19
A Cookbook With Probability One written by Damiano Rossello and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-19 with Mathematics categories.
This book offers accessible probabilistic modelling of relevant financial problems. It is divided into two parts. The first part (cookbook) is written by emphasizing the key definitions and theorems without wasting too much of the reader with unnecessary technical details. Here, the first kind of target audience is graduate students in Economics with no prior exposition to probability theory (except for undergraduate courses in Applied Statistics) which are provided by a self-contained account of probabilistic modelling mainly applied to finance. The fundamental concepts of random variable/vector and probability distributions are introduced beforehand with respect to the usual treatment of this subject in standard probability textbook, trying to strike a balance between precise mathematical definitions and their applied knowledge. All the analytic tools developed are illustrated through examples of probability distributions of future stock prices, returns and profit and loss, together with their main characteristics, such as moments, moment generating and characteristic functions, location-scale families, and quantiles. The extension to the multivariate case for fixed time horizons is presented, together with the fundamentals of stochastic processes both in discrete and continuous time as candidate models for asset prices and return dynamics. Convergence concepts are presented as applied to the problem of point estimation of means, variances, correlation coefficients and risk measures. Short sections on risk and copula functions, further illustrate the potential application of probability models to financial problems. The second part of the book can be accessed by those students with more mathematical preparation. All the relevant proofs of results which are only stated in the first part and some advanced exercises with complete solutions are presented.
Pytorch 1 X Reinforcement Learning Cookbook
DOWNLOAD
Author : Yuxi (Hayden) Liu
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-10-31
Pytorch 1 X Reinforcement Learning Cookbook written by Yuxi (Hayden) Liu and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-31 with Computers categories.
Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Key FeaturesUse PyTorch 1.x to design and build self-learning artificial intelligence (AI) modelsImplement RL algorithms to solve control and optimization challenges faced by data scientists todayApply modern RL libraries to simulate a controlled environment for your projectsBook Description Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems. What you will learnUse Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problemsDevelop a multi-armed bandit algorithm to optimize display advertisingScale up learning and control processes using Deep Q-NetworksSimulate Markov Decision Processes, OpenAI Gym environments, and other common control problemsSelect and build RL models, evaluate their performance, and optimize and deploy themUse policy gradient methods to solve continuous RL problemsWho this book is for Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.
R Cookbook
DOWNLOAD
Author : JD Long
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-06-21
R Cookbook written by JD Long and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-21 with Computers categories.
Perform data analysis with R quickly and efficiently with more than 275 practical recipes in this expanded second edition. The R language provides everything you need to do statistical work, but its structure can be difficult to master. These task-oriented recipes make you productive with R immediately. Solutions range from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem and includes a discussion that explains the solution and provides insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an intermediate user, this book will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform basic functions Simplify data input and output Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data
The Quantum Cookbook
DOWNLOAD
Author : Jim Baggott
language : en
Publisher: Oxford University Press, USA
Release Date : 2020
The Quantum Cookbook written by Jim Baggott and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Science categories.
The book combines popular and textbook presentation. It aims not to teach readers how to do quantum mechanics but rather helps them understand how to think about quantum mechanics. The real source of confusion in quantum mechanics does not originate in the mathematics, but in our understanding of what a scientific theory is supposed to represent.
Tensorflow 1 X Deep Learning Cookbook
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-12-12
Tensorflow 1 X Deep Learning Cookbook written by Antonio Gulli and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-12 with Computers categories.
Take the next step in implementing various common and not-so-common neural networks with Tensorflow 1.x About This Book Skill up and implement tricky neural networks using Google's TensorFlow 1.x An easy-to-follow guide that lets you explore reinforcement learning, GANs, autoencoders, multilayer perceptrons and more. Hands-on recipes to work with Tensorflow on desktop, mobile, and cloud environment Who This Book Is For This book is intended for data analysts, data scientists, machine learning practitioners and deep learning enthusiasts who want to perform deep learning tasks on a regular basis and are looking for a handy guide they can refer to. People who are slightly familiar with neural networks, and now want to gain expertise in working with different types of neural networks and datasets, will find this book quite useful. What You Will Learn Install TensorFlow and use it for CPU and GPU operations Implement DNNs and apply them to solve different AI-driven problems. Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with TensorFlow and learn how to access and use them in your code. Use TensorBoard to understand neural network architectures, optimize the learning process, and peek inside the neural network black box. Use different regression techniques for prediction and classification problems Build single and multilayer perceptrons in TensorFlow Implement CNN and RNN in TensorFlow, and use it to solve real-world use cases. Learn how restricted Boltzmann Machines can be used to recommend movies. Understand the implementation of Autoencoders and deep belief networks, and use them for emotion detection. Master the different reinforcement learning methods to implement game playing agents. GANs and their implementation using TensorFlow. In Detail Deep neural networks (DNNs) have achieved a lot of success in the field of computer vision, speech recognition, and natural language processing. The entire world is filled with excitement about how deep networks are revolutionizing artificial intelligence. This exciting recipe-based guide will take you from the realm of DNN theory to implementing them practically to solve the real-life problems in artificial intelligence domain. In this book, you will learn how to efficiently use TensorFlow, Google's open source framework for deep learning. You will implement different deep learning networks such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learning Networks (DQNs), and Generative Adversarial Networks (GANs) with easy to follow independent recipes. You will learn how to make Keras as backend with TensorFlow. With a problem-solution approach, you will understand how to implement different deep neural architectures to carry out complex tasks at work. You will learn the performance of different DNNs on some popularly used data sets such as MNIST, CIFAR-10, Youtube8m, and more. You will not only learn about the different mobile and embedded platforms supported by TensorFlow but also how to set up cloud platforms for deep learning applications. Get a sneak peek of TPU architecture and how they will affect DNN future. By using crisp, no-nonsense recipes, you will become an expert in implementing deep learning techniques in growing real-world applications and research areas such as reinforcement learning, GANs, autoencoders and more. Style and approach This book consists of hands-on recipes where you'll deal with real-world problems. You'll execute a series of tasks as you walk through data mining challenges using TensorFlow 1.x. Your one-stop solution for common and not-so-common pain points, this is a book that you must have on the shelf.
The Probability Lifesaver
DOWNLOAD
Author : Steven J. Miller
language : en
Publisher: Princeton University Press
Release Date : 2017-05-16
The Probability Lifesaver written by Steven J. Miller and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-16 with Mathematics categories.
The essential lifesaver for students who want to master probability For students learning probability, its numerous applications, techniques, and methods can seem intimidating and overwhelming. That's where The Probability Lifesaver steps in. Designed to serve as a complete stand-alone introduction to the subject or as a supplement for a course, this accessible and user-friendly study guide helps students comfortably navigate probability's terrain and achieve positive results. The Probability Lifesaver is based on a successful course that Steven Miller has taught at Brown University, Mount Holyoke College, and Williams College. With a relaxed and informal style, Miller presents the math with thorough reviews of prerequisite materials, worked-out problems of varying difficulty, and proofs. He explores a topic first to build intuition, and only after that does he dive into technical details. Coverage of topics is comprehensive, and materials are repeated for reinforcement—both in the guide and on the book's website. An appendix goes over proof techniques, and video lectures of the course are available online. Students using this book should have some familiarity with algebra and precalculus. The Probability Lifesaver not only enables students to survive probability but also to achieve mastery of the subject for use in future courses. A helpful introduction to probability or a perfect supplement for a course Numerous worked-out examples Lectures based on the chapters are available free online Intuition of problems emphasized first, then technical proofs given Appendixes review proof techniques Relaxed, conversational approach
Ruby Cookbook
DOWNLOAD
Author : Lucas Carlson
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2015-03-24
Ruby Cookbook written by Lucas Carlson and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-24 with Computers categories.
Why spend time on coding problems that others have already solved when you could be making real progress on your Ruby project? This updated cookbook provides more than 350 recipes for solving common problems, on topics ranging from basic data structures, classes, and objects, to web development, distributed programming, and multithreading. Revised for Ruby 2.1, each recipe includes a discussion on why and how the solution works. You’ll find recipes suitable for all skill levels, from Ruby newbies to experts who need an occasional reference. With Ruby Cookbook, you’ll not only save time, but keep your brain percolating with new ideas as well. Recipes cover: Data structures including strings, numbers, date and time, arrays, hashes, files and directories Using Ruby’s code blocks, also known as closures OOP features such as classes, methods, objects, and modules XML and HTML, databases and persistence, and graphics and other formats Web development with Rails and Sinatra Internet services, web services, and distributed programming Software testing, debugging, packaging, and distributing Multitasking, multithreading, and extending Ruby with other languages
R Cookbook
DOWNLOAD
Author : Paul Teetor
language : en
Publisher: O'Reilly Media
Release Date : 2011-03-03
R Cookbook written by Paul Teetor and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-03 with Computers categories.
With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author
Scipy Recipes
DOWNLOAD
Author : V Kishore Ayyadevara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-12-20
Scipy Recipes written by V Kishore Ayyadevara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-20 with Computers categories.
Tackle the most sophisticated problems associated with scientific computing and data manipulation using SciPy Key Features Covers a wide range of data science tasks using SciPy, NumPy, pandas, and matplotlib Effective recipes on advanced scientific computations, statistics, data wrangling, data visualization, and more A must-have book if you're looking to solve your data-related problems using SciPy, on-the-go Book Description With the SciPy Stack, you get the power to effectively process, manipulate, and visualize your data using the popular Python language. Utilizing SciPy correctly can sometimes be a very tricky proposition. This book provides the right techniques so you can use SciPy to perform different data science tasks with ease. This book includes hands-on recipes for using the different components of the SciPy Stack such as NumPy, SciPy, matplotlib, and pandas, among others. You will use these libraries to solve real-world problems in linear algebra, numerical analysis, data visualization, and much more. The recipes included in the book will ensure you get a practical understanding not only of how a particular feature in SciPy Stack works, but also of its application to real-world problems. The independent nature of the recipes also ensure that you can pick up any one and learn about a particular feature of SciPy without reading through the other recipes, thus making the book a very handy and useful guide. What you will learn Get a solid foundation in scientific computing using Python Master common tasks related to SciPy and associated libraries such as NumPy, pandas, and matplotlib Perform mathematical operations such as linear algebra and work with the statistical and probability functions in SciPy Master advanced computing such as Discrete Fourier Transform and K-means with the SciPy Stack Implement data wrangling tasks efficiently using pandas Visualize your data through various graphs and charts using matplotlib Who this book is for Python developers, aspiring data scientists, and analysts who want to get started with scientific computing using Python will find this book an indispensable resource. If you want to learn how to manipulate and visualize your data using the SciPy Stack, this book will also help you. A basic understanding of Python programming is all you need to get started.
Neural Networks With Keras Cookbook
DOWNLOAD
Author : V Kishore Ayyadevara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-02-28
Neural Networks With Keras Cookbook written by V Kishore Ayyadevara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-28 with Computers categories.
Implement neural network architectures by building them from scratch for multiple real-world applications. Key FeaturesFrom scratch, build multiple neural network architectures such as CNN, RNN, LSTM in KerasDiscover tips and tricks for designing a robust neural network to solve real-world problemsGraduate from understanding the working details of neural networks and master the art of fine-tuning themBook Description This book will take you from the basics of neural networks to advanced implementations of architectures using a recipe-based approach. We will learn about how neural networks work and the impact of various hyper parameters on a network's accuracy along with leveraging neural networks for structured and unstructured data. Later, we will learn how to classify and detect objects in images. We will also learn to use transfer learning for multiple applications, including a self-driving car using Convolutional Neural Networks. We will generate images while leveraging GANs and also by performing image encoding. Additionally, we will perform text analysis using word vector based techniques. Later, we will use Recurrent Neural Networks and LSTM to implement chatbot and Machine Translation systems. Finally, you will learn about transcribing images, audio, and generating captions and also use Deep Q-learning to build an agent that plays Space Invaders game. By the end of this book, you will have developed the skills to choose and customize multiple neural network architectures for various deep learning problems you might encounter. What you will learnBuild multiple advanced neural network architectures from scratchExplore transfer learning to perform object detection and classificationBuild self-driving car applications using instance and semantic segmentationUnderstand data encoding for image, text and recommender systemsImplement text analysis using sequence-to-sequence learningLeverage a combination of CNN and RNN to perform end-to-end learningBuild agents to play games using deep Q-learningWho this book is for This intermediate-level book targets beginners and intermediate-level machine learning practitioners and data scientists who have just started their journey with neural networks. This book is for those who are looking for resources to help them navigate through the various neural network architectures; you'll build multiple architectures, with concomitant case studies ordered by the complexity of the problem. A basic understanding of Python programming and a familiarity with basic machine learning are all you need to get started with this book.