A Course In Complex Analysis And Riemann Surfaces

DOWNLOAD
Download A Course In Complex Analysis And Riemann Surfaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Course In Complex Analysis And Riemann Surfaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Course In Complex Analysis And Riemann Surfaces
DOWNLOAD
Author : Wilhelm Schlag
language : en
Publisher: American Mathematical Society
Release Date : 2014-08-06
A Course In Complex Analysis And Riemann Surfaces written by Wilhelm Schlag and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-06 with Mathematics categories.
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.
Complex Analysis Riemann Surfaces And Integrable Systems
DOWNLOAD
Author : Sergey M. Natanzon
language : en
Publisher: Springer Nature
Release Date : 2020-01-03
Complex Analysis Riemann Surfaces And Integrable Systems written by Sergey M. Natanzon and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-03 with Mathematics categories.
This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications. After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk – a classical problem that has important applications in hydrodynamics, gas dynamics, etc. The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.
Explorations In Complex Functions
DOWNLOAD
Author : Richard Beals
language : en
Publisher: Springer Nature
Release Date : 2020-10-19
Explorations In Complex Functions written by Richard Beals and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-19 with Mathematics categories.
This textbook explores a selection of topics in complex analysis. From core material in the mainstream of complex analysis itself, to tools that are widely used in other areas of mathematics, this versatile compilation offers a selection of many different paths. Readers interested in complex analysis will appreciate the unique combination of topics and connections collected in this book. Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into L-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give rise to Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener–Hopf method. Showcasing an array of accessible excursions, Explorations in Complex Functions is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout.
Riemann Surfaces By Way Of Complex Analytic Geometry
DOWNLOAD
Author : Dror Varolin
language : en
Publisher: American Mathematical Soc.
Release Date : 2011-08-10
Riemann Surfaces By Way Of Complex Analytic Geometry written by Dror Varolin and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-10 with Mathematics categories.
This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch
Complex Analysis In One Variable And Riemann Surfaces
DOWNLOAD
Author : Mei-Chi Shaw
language : en
Publisher: Springer
Release Date : 2025-07-29
Complex Analysis In One Variable And Riemann Surfaces written by Mei-Chi Shaw and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-29 with Mathematics categories.
This textbook is intended for an introductory course in the theory of complex analysis and Riemann surfaces. A special feature includes the systematic treatment of complex analysis from the point of view of partial differential equations. The main goal is to study complex analysis in one variable using modern mathematics with emphasis on its deep connections to other branches of mathematics, especially on the tremendous development of partial differential equations in the twentieth century. The book can also be used as a reference for students and researchers interested in modern concepts and techniques in one and several complex variables, algebraic and complex geometry, partial differential equations and geometric analysis. The book is reasonably self-contained with much background material given in the appendices. Many examples and exercises are provided. The text is based on lecture notes taught by the first author over the years at the University of Notre Dame to widely varied audiences, including students in mathematics, physics, engineering and other sciences. By taking advantage of the development of Hilbert space methods in partial differential equations, this textbook provides a much-needed update on complex function theory and Riemann surfaces. In the first five chapters, the authors introduce some background material in complex analysis in one variable using only multivariable calculus. This includes the Cauchy integral formula with its applications, the Riemann mapping theorem and the theorems of Weierstrass and Mittag–Leffler. Starting from Chapter 6, a comprehensive study of the roles that partial differential equations play in complex analysis is presented systematically with focus on the Cauchy–Riemann equation and the Laplacian. A thorough treatment of the Laplace and Poisson equations with both classical and Hilbert space approaches is given and applied to obtain function theory on Riemann surfaces. The book also introduces several complex variables and bridges the gap between one and several complex variables.
An Introduction To Riemann Surfaces
DOWNLOAD
Author : Terrence Napier
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-09-08
An Introduction To Riemann Surfaces written by Terrence Napier and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-08 with Mathematics categories.
This textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the so-called L2 $\bar{\delta}$-method. This method is a powerful technique from the theory of several complex variables, and provides for a unique approach to the fundamentally different characteristics of compact and noncompact Riemann surfaces. The inclusion of continuing exercises running throughout the book, which lead to generalizations of the main theorems, as well as the exercises included in each chapter make this text ideal for a one- or two-semester graduate course.
Topics In Complex Analysis
DOWNLOAD
Author : Dan Romik
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2023-08-21
Topics In Complex Analysis written by Dan Romik and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-21 with Mathematics categories.
This graduate-level mathematics textbook provides an in-depth and readable exposition of selected topics in complex analysis. The material spans both the standard theory at a level suitable for a first-graduate class on the subject and several advanced topics delving deeper into the subject and applying the theory in different directions. The focus is on beautiful applications of complex analysis to geometry and number theory. The text is accompanied by beautiful figures illustrating many of the concepts and proofs. Among the topics covered are asymptotic analysis; conformal mapping and the Riemann mapping theory; the Euler gamma function, the Riemann zeta function, and a proof of the prime number theorem; elliptic functions, and modular forms. The final chapter gives the first detailed account in textbook format of the recent solution to the sphere packing problem in dimension 8, published by Maryna Viazovska in 2016 — a groundbreaking proof for which Viazovska was awarded the Fields Medal in 2022. The book is suitable for self-study by graduate students or advanced undergraduates with an interest in complex analysis and its applications, or for use as a textbook for graduate mathematics classes, with enough material for 2-3 semester-long classes. Researchers in complex analysis, analytic number theory, modular forms, and the theory of sphere packing, will also find much to enjoy in the text, including new material not found in standard textbooks.
Introduction To Compact Riemann Surfaces And Dessins D Enfants
DOWNLOAD
Author : Ernesto Girondo
language : en
Publisher: Cambridge University Press
Release Date : 2012
Introduction To Compact Riemann Surfaces And Dessins D Enfants written by Ernesto Girondo and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
An elementary account of the theory of compact Riemann surfaces and an introduction to the Belyi-Grothendieck theory of dessins d'enfants.
Complex Analysis And Applications
DOWNLOAD
Author : Hemant Kumar Pathak
language : en
Publisher: Springer Nature
Release Date : 2019-08-19
Complex Analysis And Applications written by Hemant Kumar Pathak and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-19 with Mathematics categories.
This book offers an essential textbook on complex analysis. After introducing the theory of complex analysis, it places special emphasis on the importance of Poincare theorem and Hartog’s theorem in the function theory of several complex variables. Further, it lays the groundwork for future study in analysis, linear algebra, numerical analysis, geometry, number theory, physics (including hydrodynamics and thermodynamics), and electrical engineering. To benefit most from the book, students should have some prior knowledge of complex numbers. However, the essential prerequisites are quite minimal, and include basic calculus with some knowledge of partial derivatives, definite integrals, and topics in advanced calculus such as Leibniz’s rule for differentiating under the integral sign and to some extent analysis of infinite series. The book offers a valuable asset for undergraduate and graduate students of mathematics and engineering, as well as students with no background in topological properties.
Algebraic Curves And Riemann Surfaces For Undergraduates
DOWNLOAD
Author : Anil Nerode
language : en
Publisher: Springer Nature
Release Date : 2023-01-16
Algebraic Curves And Riemann Surfaces For Undergraduates written by Anil Nerode and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-16 with Mathematics categories.
The theory relating algebraic curves and Riemann surfaces exhibits the unity of mathematics: topology, complex analysis, algebra and geometry all interact in a deep way. This textbook offers an elementary introduction to this beautiful theory for an undergraduate audience. At the heart of the subject is the theory of elliptic functions and elliptic curves. A complex torus (or “donut”) is both an abelian group and a Riemann surface. It is obtained by identifying points on the complex plane. At the same time, it can be viewed as a complex algebraic curve, with addition of points given by a geometric “chord-and-tangent” method. This book carefully develops all of the tools necessary to make sense of this isomorphism. The exposition is kept as elementary as possible and frequently draws on familiar notions in calculus and algebra to motivate new concepts. Based on a capstone course given to senior undergraduates, this book is intended as a textbook for courses at this level and includes a large number of class-tested exercises. The prerequisites for using the book are familiarity with abstract algebra, calculus and analysis, as covered in standard undergraduate courses.