A Course In Mathematical Statistics And Large Sample Theory

DOWNLOAD
Download A Course In Mathematical Statistics And Large Sample Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Course In Mathematical Statistics And Large Sample Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Course In Mathematical Statistics And Large Sample Theory
DOWNLOAD
Author : Rabi Bhattacharya
language : en
Publisher: Springer
Release Date : 2016-08-13
A Course In Mathematical Statistics And Large Sample Theory written by Rabi Bhattacharya and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-13 with Mathematics categories.
This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.
A Course In Large Sample Theory
DOWNLOAD
Author : Thomas S. Ferguson
language : en
Publisher: Routledge
Release Date : 2017-09-06
A Course In Large Sample Theory written by Thomas S. Ferguson and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-06 with Mathematics categories.
A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.
Elements Of Large Sample Theory
DOWNLOAD
Author : E.L. Lehmann
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-18
Elements Of Large Sample Theory written by E.L. Lehmann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.
Elements of Large-Sample Theory provides a unified treatment of first- order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology. The book is written at an elementary level and is suitable for students at the master's level in statistics and in aplied fields who have a background of two years of calculus. E.L. Lehmann is Professor of Statistics Emeritus at the University of California, Berkeley. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands, and the University of Chicago. Also available: Lehmann/Casella, Theory at Point Estimation, 2nd ed. Springer-Verlag New York, Inc., 1998, ISBN 0- 387-98502-6 Lehmann, Testing Statistical Hypotheses, 2nd ed. Springer-Verlag New York, Inc., 1997, ISBN 0-387-94919-4
Theoretical Statistics
DOWNLOAD
Author : Robert W. Keener
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-08
Theoretical Statistics written by Robert W. Keener and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-08 with Mathematics categories.
Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.
All Of Statistics
DOWNLOAD
Author : Larry Wasserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-09-17
All Of Statistics written by Larry Wasserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-17 with Computers categories.
This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics.
Mathematical Statistics
DOWNLOAD
Author : Jun Shao
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-02-03
Mathematical Statistics written by Jun Shao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-03 with Mathematics categories.
This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Chapters 3-7 contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results. In addition to improving the presentation, the new edition makes Chapter 1 a self-contained chapter for probability theory with emphasis in statistics. Added topics include useful moment inequalities, more discussions of moment generating and characteristic functions, conditional independence, Markov chains, martingales, Edgeworth and Cornish-Fisher expansions, and proofs to many key theorems such as the dominated convergence theorem, monotone convergence theorem, uniqueness theorem, continuity theorem, law of large numbers, and central limit theorem. A new section in Chapter 5 introduces semiparametric models, and a number of new exercises were added to each chapter.
A First Course In Order Statistics
DOWNLOAD
Author : Barry C. Arnold
language : en
Publisher: SIAM
Release Date : 2008-09-25
A First Course In Order Statistics written by Barry C. Arnold and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-25 with Mathematics categories.
This updated classic text will aid readers in understanding much of the current literature on order statistics: a flourishing field of study that is essential for any practising statistician and a vital part of the training for students in statistics. Written in a simple style that requires no advanced mathematical or statistical background, the book introduces the general theory of order statistics and their applications. The book covers topics such as distribution theory for order statistics from continuous and discrete populations, moment relations, bounds and approximations, order statistics in statistical inference and characterisation results, and basic asymptotic theory. There is also a short introduction to record values and related statistics. The authors have updated the text with suggestions for further reading that may be used for self-study. Written for advanced undergraduate and graduate students in statistics and mathematics, practising statisticians, engineers, climatologists, economists, and biologists.
Mathematical Statistics For Applied Econometrics
DOWNLOAD
Author : Charles B Moss
language : en
Publisher: CRC Press
Release Date : 2014-10-16
Mathematical Statistics For Applied Econometrics written by Charles B Moss and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-16 with Business & Economics categories.
An Introductory Econometrics Text Mathematical Statistics for Applied Econometrics covers the basics of statistical inference in support of a subsequent course on classical econometrics. The book shows students how mathematical statistics concepts form the basis of econometric formulations. It also helps them think about statistics as more than a toolbox of techniques. Uses Computer Systems to Simplify Computation The text explores the unifying themes involved in quantifying sample information to make inferences. After developing the necessary probability theory, it presents the concepts of estimation, such as convergence, point estimators, confidence intervals, and hypothesis tests. The text then shifts from a general development of mathematical statistics to focus on applications particularly popular in economics. It delves into matrix analysis, linear models, and nonlinear econometric techniques. Students Understand the Reasons for the Results Avoiding a cookbook approach to econometrics, this textbook develops students’ theoretical understanding of statistical tools and econometric applications. It provides them with the foundation for further econometric studies.
Mathematical Statistics With Applications In R
DOWNLOAD
Author : Kandethody M. Ramachandran
language : en
Publisher: Elsevier
Release Date : 2014-09-14
Mathematical Statistics With Applications In R written by Kandethody M. Ramachandran and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-14 with Mathematics categories.
Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner.This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students.Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. - Step-by-step procedure to solve real problems, making the topic more accessible - Exercises blend theory and modern applications - Practical, real-world chapter projects - Provides an optional section in each chapter on using Minitab, SPSS and SAS commands - Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods
Essential Statistical Inference
DOWNLOAD
Author : Dennis D. Boos
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-02-06
Essential Statistical Inference written by Dennis D. Boos and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-06 with Mathematics categories.
This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.